
Intention-Aware Navigation in Crowds with Extended-Space
POMDP Planning

Himanshu Gupta
University of Colorado Boulder

Boulder, Colorado, USA
himanshu.gupta@colorado.edu

Bradley Hayes
University of Colorado Boulder

Boulder, Colorado, USA
bradley.hayes@colorado.edu

Zachary Sunberg
University of Colorado Boulder

Boulder, Colorado, USA
zachary.sunberg@colorado.edu

ABSTRACT
This paper presents a hybrid online Partially Observable Markov
Decision Process (POMDP) planning system that addresses the
problem of autonomous navigation in the presence of multi-modal
uncertainty introduced by other agents in the environment. As a
particular example, we consider the problem of autonomous naviga-
tion in dense crowds of pedestrians and among obstacles. Popular
approaches to this problem first generate a path using a complete
planner (e.g., Hybrid A*) with ad-hoc assumptions about uncer-
tainty, then use online tree-based POMDP solvers to reason about
uncertainty with control over a limited aspect of the problem (i.e.
speed along the path). We present a more capable and responsive
real-time approach enabling the POMDP planner to control more
degrees of freedom (e.g., both speed AND heading) to achieve more
flexible and efficient solutions. This modification greatly extends
the region of the state space that the POMDP planner must reason
over, significantly increasing the importance of finding effective
roll-out policies within the limited computational budget that real
time control affords. Our key insight is to use multi-query motion
planning techniques (e.g., Probabilistic Roadmaps or Fast Marching
Method) as priors for rapidly generating efficient roll-out policies
for every state that the POMDP planning tree might reach during its
limited horizon search. Our proposed approach generates trajecto-
ries that are safe and significantly more efficient than the previous
approach, even in densely crowded dynamic environments with
long planning horizons.

KEYWORDS
Navigation among pedestrians; Path Planning under uncertainty;
Partially Observable Markov Decision Process (POMDP)

ACM Reference Format:
Himanshu Gupta, Bradley Hayes, and Zachary Sunberg. 2022. Intention-
Aware Navigation in Crowds with Extended-Space POMDP Planning . In
Proc. of the 21st International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS 2022), Online, May 9–13, 2022, IFAAMAS, 9 pages.

1 INTRODUCTION
It is increasingly common to find autonomous vehicles operating
successfully in relatively predictable and structured scenarios such
as freeway driving. However, despite ample investments, more
complex navigation tasks with less structure imposed on the dy-
namic elements remain open challenges [22, 30]. Interaction with
other agents in the environment is a particularly prolific source of

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

Figure 1: Two-dimensional POMDP motion planning with
pedestrians. Green and red objects represent nodes in the
planning tree, with green indicating high value. Blue circles
denote the position of humans at different times. Black cir-
cles denote static obstacles. Dashed lines represent roll-out
trajectories, a critical part of the proposed approach.

difficult problems. Navigating through a crowd of pedestrians is
one important example of this. In science fiction movies like Star
Wars, droids move deftly between the people walking around them,
and intuitively pedestrians should not greatly impede a properly-
controlled robot’s motion. In order to choose a good trajectory,
however, the robot must reason about the intentions of the humans
around it, a task fraught with uncertainty.

The Partially Observable Markov Decision Process (POMDP) is
a mathematical framework for optimal decision making in the pres-
ence of various types of uncertainty. Previous approaches to tasks
like pedestrian navigation have used the POMDP framework for
navigation-centric tasks (e.g. [1, 4, 7, 23, 29, 42]). However, in these
approaches POMDP planning is often relegated to a very limited
role (e.g. speed control), or to a very limited class of uncertainty
(e.g. Gaussian or unimodal distributions [1, 7]). For instance, Bai
et al. (2015) [4] use the hybrid 𝐴∗ algorithm [14] to plan a drivable
path from the vehicle’s current position to its goal location, using a
POMDP formulation only for speed control over that path. The ob-
served reticence within the field to use POMDPs for large planning
problems is understandable; in general obtaining exact solutions to
POMDPs is an intractable problem [33]. However, sparse tree-based

online planners are surprisingly insensitive to the size of the state
and observation space [21, 38, 41, 47], suggesting a way forward
for increasingly expressive POMDP formulations to improve the
state of the art in critical control problems.

In contrast to the partitioned approach, we propose a more effec-
tive and general approach to planning for real-time tasks involving
navigation with partial observability and arbitrary distributions.We
assert that the POMDP planner should have control over all degrees
of freedom that are relevant to the uncertainty it is facing to maxi-
mize its ability to generate satisfactory plans. For example, when
navigating among pedestrians, the POMDP planner should have
control over the speed and heading, rather than solely speed along
a predetermined path [4, 6, 18, 19]. One may use online POMDP
algorithms (e.g., DESPOT [47]) that perform a tree search guided
by value estimates obtained by executing a roll-out policy.

Since an expansion of the action space can open up a much
larger region of the state space to exploration, a critical challenge
is determining a good roll-out policy for the vastly increased set
of states reachable in the tree search1. In the absence of an effec-
tive roll-out policy, a limited-horizon planner might never find the
sparse positive terminal rewards that are typical in navigation tasks.
The proposed method addresses this by incorporating multi-query
motion planning techniques to produce a more informed roll-out
policy, allowing for a corresponding increase in POMDP complex-
ity and thus solution quality. To demonstrate the effectiveness of
this approach we evaluate it with two motion planning methods,
Probabilistic Roadmaps (𝑃𝑅𝑀) and Fast Marching Methods (𝐹𝑀𝑀),
to generate effective roll-out policies.

Our evaluation shows that online navigation solutions to a
POMDP with an extended action space and roll-out policies in-
formed by multi-query planning methods are considerably more
efficient in densely crowded environments than the two-step ap-
proach proposed in [4] without compromising the safety of the
pedestrians. The proposed approach explores multiple possible
paths over a wider search space while reasoning over uncertainty
in pedestrian intention as can be seen from Fig. 1, instead of han-
dling uncertainty over just one path [4, 6, 18, 19]. We have also
shown that the choice of multi-query planning technique does not
affect the performance significantly, as long as it can generate an ef-
fective roll-out policy. Using pedestrian navigation as a motivating
example for our proposed method throughout the remainder of this
work, we refer to the popular unidimensional speed-based POMDP
control formulation as Limited Space planner or 𝐿𝑆 planner, and
our higher-dimensional (speed and heading) action space POMDP
formulation as Extended Space planner or 𝐸𝑆 planner.

2 RELATEDWORK
In recent years, a number of research efforts have focused on solving
the problem of autonomous navigation in dynamic environments,
especially among pedestrians.

For safe and efficient navigation, a controller should incorpo-
rate pedestrian intentions and the corresponding behaviors into

1Since previous comparable approaches plan only along a 1-𝐷 path generated via𝐴∗ ,
roll-out policies are needed only for that single path, which are straightforward to
specify by hand [4]

decision making. This raises the need for accurate models of pedes-
trian intention and behavior. A considerable amount of work has
focused on using recorded trajectories to learn pedestrian dynamics
[2, 9, 31]. However, these methods generally have large data re-
quirements, and the learned model may not generalize well to new
conditions. Since these learned patterns generally do not change
after their generation, Vasquez et al. [46] presented an approach
where motion patterns can be learned incrementally, and in parallel
with prediction using Hidden Markov Models. Luo et al.[29] de-
signed a pedestrian motion model that accounts for both intentions
and interactions to capture pedestrian motions accurately.

Our work can be situated within a body of literature that focuses
on determining the best plan of action for an autonomous vehicle,
given a pedestrian behavior model. Less complex approaches use
reactive control schemes ([17, 35]) that neither utilize a pedestrian
model nor account for the delayed effects of the agent’s current
action. As a result, these approaches often lead to sub-optimal deci-
sions. Another common approach is to use deterministic pedestrian
behavior models to generate paths that avoid dynamic and static
obstacles. The path can subsequently be executed using a feed-
back controller ([24, 45]). However, both approaches ignore the
uncertainty in pedestrian intention estimation. Recent work has
addressed this issue by formulating the problem as a POMDP, and
then solving it by either using techniques from deep reinforcement
learning (RL) [11, 36] or online POMDP solvers [8, 25, 40, 47].

The works most closely related to this paper use online POMDP
planning for this task of navigating under uncertainty[4, 6, 18, 19,
29, 39, 42]. Bai et. al [4] tackled the complex task of navigation
among pedestrians using a two step process. They used hybrid 𝐴∗

to obtain a sequence of steering angles that can guide the vehi-
cle to its goal, and then used a POMDP planner which reasoned
over the uncertainty in nearby pedestrians’ intention to control the
speed over that path. This two step process can lead to undesirable
stalling of the vehicle. Luo et. al [29] compared their planner’s per-
formance against a dynamic hybrid 𝐴∗ approach that planned over
both heading angle and speed, and it outperformed other planners
in all of their evaluation metrics. However, it led to collisions with
pedestrians because unlike POMDP planning, dynamic hybrid 𝐴∗

path planning does not have the capability to handle pedestrian in-
tention uncertainty. MAGIC [25] showed the effectiveness of using
macro actions, a combination of both steering and speed in POMDP
planning for autonomous driving in crowded environments. This
suggests that the POMDP planner should control both degrees of
freedom for safe and efficient planning. However, MAGIC intro-
duces an additional step of learning macro actions which, we argue,
is not necessary if suitable roll-out policies are used.

Liang et al. [26], Sathyamoorthy et al. [34] and Fan et al. [28]
used PPO [36] to train an RL policy that directly maps sensor data
to vehicle velocity for collision avoidance with dynamic obstacles.
However, these RL agents are hard to train for long range navigation
tasks in complex environments where reward is sparse [16]. SA-
CADRL [10] uses a global planner [12] to generate way-points/sub-
goals in close proximity, and used an RL planner to obtain socially
acceptable collision free path between those way-points. To solve
long range navigation tasks with just static obstacles, PRM-RL
[16] uses motion planning techniques, primarily sampling based
methods for generating a roadmap using the RL agent to determine

connectivity, rather than the traditional collision free straight line
interpolation in C-space. RL-RRT [13] applies similar idea but also
imposed kinodynamic constraints on the local RL planner. They
showed the effectiveness of offline methods in guiding the optimal
decision search.

Our work shows that online POMDP planning over increased
degrees of freedom is achievable and more effective than control-
ling only a subset, without the need to learn and incorporate macro
actions [25]. The advantages of expanded space POMDP planning
comes at the cost of higher computational complexity which can be
offset by the use of offline methods2. The purpose of this work is
to demonstrate that POMDP planning is an effective tool that is ca-
pable of rapidly solving large-horizon planning problems, provided
it can be guided by effective roll-out policies. To the best of the
authors’ knowledge, this is the first work that combines POMDP
planning over multiple degrees of freedom with multi-query mo-
tion planning approaches for real time navigation in continuous
dynamic environments with multi-modal process uncertainty.

3 TECHNICAL APPROACH
This section describes the different technical components of our
approach including our POMDPmodel, the DESPOT algorithm, and
the multi-query planning techniques that underpin its performance.

3.1 POMDP Preliminaries
The Markov Decision Process (MDP) is a mathematical framework
for representing a broad class of sequential decision making prob-
lems. A POMDP is a generalization of an MDP in which the agent
cannot directly observe the underlying state. Instead, it must main-
tain a probability distribution over the set of possible states, based
on a set of observations and observation probabilities, and the
underlying MDP.

A POMDP is defined by a tuple (𝑆,𝐴, 𝑍,𝑇 ,𝑂, 𝑅,𝛾), where 𝑆 is
the state space, 𝐴 is the action space, 𝑍 is the observation space, 𝑇
is the transition model,𝑂 is the observation model, 𝑅 is the reward
model, and𝛾 is the discount factor. When the system is in state 𝑠 ∈ 𝑆

and takes an action 𝑎 ∈ 𝐴, it reaches state 𝑠 ′ ∈ 𝑆 with probability
𝑇 (𝑠, 𝑎, 𝑠 ′) and gets an observation 𝑧 ∈ 𝑍 with probability𝑂 (𝑠 ′, 𝑎, 𝑧).
The reward model 𝑅 is specified by a function 𝑅(𝑠, 𝑎, 𝑠 ′) which
specifies the immediate reward of transitioning from state 𝑠 via
action 𝑎 to state 𝑠 ′.

A policy for a POMDP is a function 𝜋 that specifies the action
𝑎 = 𝜋 (𝑏) at any given belief over the state space 𝑏. Online POMDP
solvers generate a policy that maximizes the expected total reward
from the current belief 𝑏:

𝑉𝜋 (𝑏) = E
(∞∑
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝜋 (𝑏𝑡)
)
|𝑏0 = 𝑏) (1)

3.2 Problem formulation as a POMDP
Our approach utilizes a POMDP to model both the agent and the dy-
namic obstacles around it, generating control solutions that account
for uncertainty in the environment.

2In practice, the "offline" portion of the computation can be carried out online, but at a
slower rate than the POMDP planning.

3.2.1 State Modeling. The state vector in our dynamic environ-
ment navigation task POMDP consists of the vehicle state and a
vector of dynamic obstacle states. The vehicle state consists of posi-
tion (𝑥𝑐 , 𝑦𝑐), orientation 𝜃𝑐 , current speed 𝑣𝑐 and its goal location
𝑔𝑐 . The state vector contains 𝑛𝑝𝑒𝑑 pedestrian states whose future
motion intentions are not directly observable, contributing uncer-
tainty in the problem formulation. The state of the 𝑖𝑡ℎ pedestrian
consists of its position (𝑥𝑖 , 𝑦𝑖), speed 𝑣𝑖 , and its intended goal loca-
tion 𝑔𝑖 . The intention of a pedestrian is modeled as a goal location,
which is hidden from the vehicle and must be inferred from its
observed behavior.

3.2.2 Action Modeling. The action space in the navigation POMDP
consists of a two dimensional vector where the agent chooses both
steering (the change in the orientation angle, 𝛿𝜃) and velocity (the
change in vehicle’s speed, 𝛿𝑠) controls, with the range of possible
values for each being dependent on the vehicle state. Further details
on this are available in Section 4.3. There is also a SUDDEN BRAKE
(𝑆𝐵) action that immediately stops the vehicle to avoid collision
with pedestrians in unexpected scenarios.

3.2.3 Observation Modeling. An observation in our POMDP model
is a vector consisting of the vehicle position and the discretized
position of all the 𝑛𝑝𝑒𝑑 pedestrians. Given state-of-the-art sensing
technology and the effectiveness of filtering techniques, our model
assumes no observation noise for these variables (empirically, small
noise here does not materially affect agent policy). As a pedestrian’s
intention is the partially observable variable in our model, we have
to infer it from the observations received over time, hedging against
estimation uncertainty during decision making.

3.2.4 Reward Modeling. The POMDP’s reward model guides the
vehicle towards an optimal driving behavior which is safe, collision-
free, and reaches the goal efficiently. We considered the following
rewards in our model.

• Goal Reward: If the vehicle reaches within distance𝐷𝑔 to the
goal, then there is a large positive reward 𝑅𝑔𝑜𝑎𝑙 . This reward
is modeled to encourage the vehicle to reach its goal.

• Obstacle Collision Penalty: If the vehicle passes within a
distance𝐷𝑜𝑏𝑠 to the static obstacle, then there is a substantial
negative reward of 𝑅𝑜𝑏𝑠 . This reward is modeled to prevent
the vehicle from running into static obstacles.

• Pedestrian Collision Penalty: If the vehicle is moving and
passes within a distance 𝐷𝑝𝑒𝑑 to a pedestrian, then there
is a substantial negative reward of 𝑅𝑝𝑒𝑑 . If the vehicle is
stationary, then we assume the pedestrian is responsible
to avoid it. This reward is modeled to ensure safety of the
pedestrians as well as the vehicle.

• Low Speed Penalty: If the vehicle is driving slower than it’s
maximum possible speed 𝑣𝑚𝑎𝑥 , then there is a small negative
reward 𝑅𝑠𝑝𝑒𝑒𝑑 = (𝑣𝑐 − 𝑣𝑚𝑎𝑥)/𝑣𝑚𝑎𝑥 . This reward is modeled
to encourage the vehicle to drive fast whenever possible.

• Sudden Stop Penalty: If the vehicle chooses the 𝑆𝐵 action,
then there is a negative reward of 𝑅𝑆𝐵 . This reward is mod-
eled to incentivize the policy against frequent “sudden brake"
action, and exploring paths where that action can be avoided.

• There is also a small negative reward of𝑅𝑡 for every planning
step. This reward is included to discourage longer paths.

3.2.5 Generative Model 𝐺 . For many problems, it is difficult to
explicitly represent the probability distributions 𝑇 and 𝑍 . Some
online POMDP solvers, however, only require samples from the
state transitions and observations. As a consequence, it is benefi-
cial to use a generative model which implicitly defines 𝑇 and 𝑍 ,
even when they cannot be explicitly represented. 𝐺 stochastically
generates a new state, observation, and reward given the current
state and action: 𝑠 ′, 𝑜, 𝑟 = 𝐺 (𝑠, 𝑎). In our generative model, for a
given POMDP state 𝑠 and action 𝑎, we simulate the vehicle forward
by applying 𝑎 for time step Δ𝑡 and move all pedestrians towards
their sampled goal location. The 𝑖𝑡ℎ pedestrian is moved towards
𝑔𝑖 by a distance of 𝑣𝑖Δ𝑡 + 𝜔𝑖 , where 𝜔𝑖 is a small random noise.
While more complex pedestrian models exist (e.g. PORCA [29]), the
choice of dynamic object model is regarded as an interchangeable
component of the presented architecture and is not framed as a
contribution of this work.

3.3 Solving POMDPs Online with DESPOT
We use a state-of-the-art belief tree search algorithm, DESPOT
[47] for finding a policy for our POMDP online. Its key strength is
handling continuous state space and large observation spaces. To
overcome the computational challenge of exploring a large belief
tree, DESPOT samples a set of K “scenarios”, summarizing the
execution of all policies under these sampled scenarios. DESPOT
builds its tree incrementally by performing a heuristic search guided
by a lower bound and an upper bound on the value at each belief
node in the tree.

We calculate the lower bound at a belief leaf node 𝑏𝑙 by simulat-
ing a roll-out policy for all the scenarios at that belief. For 𝐿𝑆 , the
roll-out policy executes the hybrid 𝐴∗ path. For our proposed for-
mulation (𝐸𝑆), the roll-out policy executes a path from the vehicle’s
current location to its goal aided by the use of a multi-query plan-
ner (e.g., 𝑃𝑅𝑀 or 𝐹𝑀𝑀). We use a reactive controller to determine
vehicle speed along the path. If there are no pedestrians within
distance 𝐷 𝑓 𝑎𝑟 from the vehicle, then it increases its speed by 1𝑚/𝑠 .
If there are pedestrians within distance 𝐷𝑛𝑒𝑎𝑟 to the vehicle, then
it decreases its speed by 1𝑚/𝑠 . Otherwise it maintains its current
speed. The roll-out policy is run for a fixed, predefined number of
steps𝑀 or until the termination criteria has been met.

We calculate the upper bound at𝑏𝑙 by averaging the upper bound
for all the scenarios at 𝑏𝑙 . For a scenario, if the vehicle is not sta-
tionary and is within distance 𝐷𝑝𝑒𝑑 from any pedestrian, then the
bound is 𝑅𝑝𝑒𝑑 . Otherwise, it is 𝛾𝑡𝑅𝑔𝑜𝑎𝑙 where 𝑡 is the time taken by
the vehicle to reach the goal along the chosen path assuming that
the vehicle drives at its maximum speed with no dynamic obstacles
(e.g., pedestrians) around.

DESPOT generates a policy tree from this information, with
the controller selecting the action at the root of the tree with the
greatest expected reward.

3.4 Fast Marching Method for Multi-Query
Path Planning

The Fast Marching Method (𝐹𝑀𝑀) is an algorithm for tracking and
modeling themotion of a physical wave interface [32]. The interface
is a flat curve in 2-𝐷 and a surface in 3-𝐷 or higher dimensions. It

efficiently solves the Eikonal equation:

1 = 𝐹 (𝑥) |∇𝑇 (𝑥) | (2)

where x is the position, 𝐹 (𝑥) (≥ 0) is the expansion speed of the
wave at that position, and 𝑇 (𝑥) is the time taken by the wave
interface to reach x from its source.

Given thewave’s source point and the expansion speed, 𝐹 defined
over all points in the environment, 𝐹𝑀𝑀 calculates the time𝑇 that
the wave takes to reach those points. Since 𝐹 > 0, the wave can
only expand and it can be shown that the T(x) function (originated
by a wave that grows from one single point) has only one global
minima at the source and no local minima. This method is effective
in obtaining a path from any given point in the environment to the
wave’s source point using gradient descent [44].

To find the Eikonal equation solution via FMM, we discretize
the environment into grid cells, assigning 𝐹 = 0 for those grid cells
where static obstacles are present and 𝐹 = 1 everywhere else in
the environment. We let the wave originate from the vehicle’s goal
location and then solve the Eikonal equation using the discrete
solution that Sethian proposed in [37] to get a grid map of𝑇 values
for all the cells. We then apply the Sobel operator in a 3 × 3 neigh-
borhood of every grid cell on the grid map to obtain the direction
of the gradient at that cell. In order to find a path from any cell
in the environment to the vehicle’s goal location for the roll-out
policy, we move 𝛼 units in the opposite direction of the gradient at
that cell until the goal is reached.

3.5 Probabilistic Roadmaps for Multi-Query
Path Planning

The Probabilistic Roadmap (𝑃𝑅𝑀) is a well known method for path
planning in high dimensions for robots in static environments. The
method constructs a graphwhose nodes correspond to collision-free
configurations in the space and whose edges correspond to feasible
paths between these configurations [20]. This method can be used
for any type of holonomic robot. For a holonomic vehicle moving
on the 2-𝐷 plane, the graph nodes correspond to (𝑥,𝑦) coordinates
in the environment and the edges correspond to collision free linear
paths between those points.

In this work, we assigned vehicle’s start and goal location as
nodes in the 𝑃𝑅𝑀 , and randomly sampled 𝑁𝑝𝑟𝑚 − 2 more nodes in
the environment. We added edges by connecting each node to its 𝑘
nearest neighbors where the euclidean distance between the two
nodes represent the weight of the edge between them. For every
node in the 𝑃𝑅𝑀 , we find the shortest path from that node to the
vehicle’s goal location. In order to find a path from any point in the
environment to the vehicle’s goal location for the roll-out policy,
we first find the nearest 𝑃𝑅𝑀 node to which straight line traversal
is possible and then follow the precomputed path on the 𝑃𝑅𝑀 from
that node to the goal node.

3.6 Tracking POMDP Belief
The partially observable variables in the POMDP formulation are
pedestrian intentions (goal locations) that are inferred by the belief
tracker based on the series of observations received. Since in prac-
tice there tends to be a finite number of pedestrian goal locations
for a given environment, the belief over all such intentions for each
pedestrian forms a discrete probability distribution. Changes in

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 2: Three handcrafted scenarios for evaluating au-
tonomous driving among crowd. The small red dots repre-
sent pedestrians and the solid black circles represent static
obstacles. In each scenarios, 400 pedestrians are sampled
with random initial location and intention.

goal can also be captured by the POMDP’s belief tracker. For each
pedestrian being attended to, the belief tracker observes their move-
ment from (𝑥,𝑦) to (𝑥 ′, 𝑦′), calculates their velocity 𝑣 , and updates
the belief 𝑏 (𝑔) over all the possible intentions to 𝑏 ′(𝑔) using the fol-
lowing update formula: 𝑏 ′(𝑔) = 𝜂𝑝 (𝑥 ′, 𝑦′ |𝑥,𝑦, 𝑣, 𝑔,𝑀)𝑏 (𝑔), where 𝜂
is a normalization constant. Based on the chosen pedestrian model
𝑀 , 𝑝 (𝑥 ′, 𝑦′ |𝑥,𝑦, 𝑣, 𝑔) will be directly proportional to the progress
the pedestrian made towards goal 𝑔.

4 EXPERIMENTS
In this section we explain our simulation environment and dif-
ferent experimental scenarios. We also provide specific details
about different planners and parameter values used for the ex-
periments. The open source code for the experiments is hosted at
https://github.com/himanshugupta1009/extended_space_navigation
_pomdp.

4.1 Simulation Environment
The environment in our simulator is a 100 m × 100 m square field.
The autonomous vehicle is modeled as a holonomic vehicle whose
starting position is in the bottom left half and goal location is in
the top right half of the field as can be seen in Fig. 2. Using the
Kinova MOVO robot as a representative example of this class of
platform, we set the vehicle’s maximum speed to 2𝑚/𝑠 . Pedestri-
ans are assigned one of the four possible goal locations, located at
the corners of the environment. As soon as a pedestrian reaches
its goal location, it is removed from the environment and a new
pedestrian is spawned randomly along one of the edges of the field.
Its goal location is chosen from the two goals on the opposite edge
at random. This is done to ensure that there are a fixed number
of moving pedestrians in the environment at any moment of time.
The pedestrian simulation model is same as the model used by the
POMDP generative function in Section 3.2.5. However, since it is
merely a component of our simulator, it can be replaced by an alter-
native pedestrian model (e.g. PORCA [29]) without much effect on
the performance of the proposed approach so long as it is congru-
ent with pedestrian behavior in the environment. This simulator
was built using the high-level, high-performance programming
language Julia [5].

4.2 Experiment Scenarios
Wehave designed three different scenarios to compare our planner’s
performance against a widely adopted baseline method (𝐿𝑆 planner)
[4]. They are as follows:

4.2.1 Scenario 1. There are no static obstacles in the environment.
It resembles an open field. We designed this to analyze the proposed
planner’s performance when there is plenty of empty space for the
vehicle to explore to avoid collision with pedestrians.

4.2.2 Scenario 2. There are six small static circular obstacles that
are scattered throughout the environment. It resembles a cafeteria
setting. We designed this to analyze the proposed planner’s perfor-
mance when there is less empty space available but it is distributed
throughout the field.

4.2.3 Scenario 3. There is a large static circular obstacle in the bot-
tom right corner of the environment. It resembles a L shaped lobby.
We designed this to analyze the proposed planner’s performance
when the empty space is available only in certain parts of the envi-
ronment which forces the vehicle to navigate among pedestrians
in a limited space.

4.3 Planners
The alternative experimental planners tested in the experiments
are described below. All planners use the POMDPs.jl [15] imple-
mentation of DESPOT from the ARDESPOT.jl package.3

4.3.1 LS planner. This is the baseline approach, 1𝐷-𝐴∗ against
which we have compared our proposed planner’s performance. At
every time step, the hybrid𝐴∗ algorithm finds a path from vehicle’s
current position to its goal. The path generated by Hybrid𝐴∗ on this
landscape is then used in conjunction with a POMDP solver that
determines the optimal speed given the fixed path and pedestrians
located around the vehicle.

The Hybrid𝐴∗ algorithm is an extension to𝐴∗ that can generate
a drivable path for the vehicle over continuous state space, and no-
tably was used for autonomous mobile robot path planning during
the DARPA Urban Challenge [43]. Hybrid𝐴∗ finds a minimum cost
path from the vehicle’s current position to its goal location. The
path cost is the sum of two components, 1)𝐶𝑠𝑡 to penalize collisions
with static obstacles and 2) 𝐶𝑝𝑒𝑑 to penalize collisions with pedes-
trians. We reduce the path cost exponentially over time by a fixed
discount factor 𝜆 ∈ (0, 1] to more heavily consider cost estimates at
the beginning of the path due to increasing uncertainty [4]. In this
approach, every pedestrian is modeled as a static obstacle at the
center of a potential field with size proportional to the uncertainty
around their intended goal. When pedestrian’s intention is highly
uncertain, we place a large potential field around the pedestrian’s
current location. Otherwise, we place a potential field around the
pedestrian’s most likely path [4]. The path planner has 36 search
actions from −170° to 180° at 10° intervals.

The corresponding POMDP’s reward model is the same as that
described in Section 3.2.4 with the exception of the obstacle collision
penalty, which is omitted since collision with static obstacles is
avoided by the path planner. 𝐿𝑆 uses DESPOT to determine the best

3https://github.com/JuliaPOMDP/ARDESPOT.jl

https://github.com/himanshugupta1009/extended_space_navigation_pomdp
https://github.com/himanshugupta1009/extended_space_navigation_pomdp
https://github.com/JuliaPOMDP/ARDESPOT.jl

Table 1: Holonomic Vehicle Planner Performance Comparison.

Scenario 1𝐷-𝐴∗ 2𝐷-𝐹𝑀𝑀 2𝐷-𝑃𝑅𝑀
(# Ped) Time (in s) # SB action Time (in s) # Outperformed # SB action Time (in s) # Outperformed # SB action
1 (100) 77.02 ± 0.69 0.34 ± 0.06 64.04 ± 0.37 99 0.21 ± 0.04 64.06 ± 0.36 99 0.16 ± 0.04
1 (200) 87.73 ± 0.86 0.47 ± 0.06 69.23 ± 0.54 98 0.44 ± 0.06 69.16 ± 0.64 98 0.36 ± 0.06
1 (300) 99.14 ± 1.03 0.49 ± 0.06 76.93 ± 0.76 100 0.94 ± 0.08 76.5 ± 0.69 99 0.78 ± 0.08
1 (400) 115.85 ± 1.81 0.94 ± 0.10 90.03 ± 1.42 94 1.42 ± 0.12 91.31 ± 1.09 93 1.25 ± 0.11
2 (100) 78.97 ± 0.86 0.31 ± 0.05 66.05 ± 0.44 95 0.24 ± 0.04 65.92 ± 0.42 93 0.16 ± 0.03
2 (200) 89.44 ± 0.85 0.44 ± 0.06 72.24 ± 0.69 95 0.48 ± 0.06 72.21 ± 0.75 98 0.47 ± 0.06
2 (300) 102.67 ± 1.31 0.5 ± 0.07 81.95 ± 0.95 98 0.94 ± 0.09 83.74 ± 1.07 93 1.05 ± 0.10
2 (400) 114.46 ± 1.94 0.56 ± 0.06 90.65 ± 0.98 93 1.72 ± 0.11 92.78 ± 1.49 91 1.64 ± 0.11
3 (100) 82.07 ± 0.81 0.41 ± 0.06 73.18 ± 0.64 93 0.29 ± 0.04 72.27 ± 0.66 92 0.22 ± 0.04
3 (200) 94.87 ± 1.03 0.35 ± 0.06 79.53 ± 0.64 93 0.56 ± 0.06 79.23 ± 0.76 91 0.49 ± 0.06
3 (300) 107.26 ± 1.35 0.46 ± 0.07 87.89 ± 0.93 97 0.98 ± 0.08 87.41 ± 1.12 95 1.0 ± 0.10
3 (400) 122.73 ± 2.32 0.76 ± 0.09 95.92 ± 1.02 97 1.43 ± 0.11 95.87 ± 1.20 95 1.39 ± 0.10
The average travel time, the number of trajectories in which each proposed planner outperformed the baseline in terms of travel time, and the average

number of 𝑆𝐵 actions for each algorithm over 100 trials. The standard error of the mean is indicated for averaged quantities. The best travel time and the least
amount of 𝑆𝐵 action in each row are bolded. Multiple entries are bolded if they are statistically similar.

possible 𝛿𝑠 out of {−1𝑚/𝑠, 0𝑚/𝑠, 1𝑚/𝑠, 𝑆𝐵} at every time step along
the generated path.

4.3.2 ESplanner. Wepropose two 𝐸𝑆 planners, 2𝐷-𝐹𝑀𝑀 and 2𝐷-
𝑃𝑅𝑀 . At every time step, 𝐸𝑆 selects both, 𝛿𝜃 and 𝛿𝑠 for the vehicle.
Since DESPOT does not perform well for continuous or large action
space problems, we choose a small discrete set of actions depending
on the vehicle’s state variables (𝑥𝑐 , 𝑦𝑐 , 𝑣𝑐). When 𝑣𝑐 = 0, there are
9 possible actions. It can either stay stationary (i.e 𝛿𝑠 = 0𝑚/𝑠) or
increase its speed (i.e 𝛿𝑠 = 1𝑚/𝑠) while choosing a 𝛿𝜃 . There are
7 possible choices for 𝛿𝜃 from −45° to 45° at 15° intervals. We add
another potential value for 𝛿𝜃 related to potential roll-out policies
called 𝛿𝑅𝑂 , which changes the vehicle’s orientation according to
the 𝐹𝑀𝑀 or 𝑃𝑅𝑀 roll-out policy at (𝑥𝑐 , 𝑦𝑐). If 𝑣𝑐 ≠ 0, then there
are 11 possible actions. The planner can choose to either increase
(𝛿𝑠 = 1𝑚/𝑠) or decrease (𝛿𝑠 = -1𝑚/𝑠) its speed without changing
its orientation (i.e. 𝛿𝜃 = 0°), or maintain its current speed (i.e 𝛿𝑠 =
0𝑚/𝑠) and select from 8 possible 𝛿𝜃 choices mentioned above, or
apply the SB action.

Depending on the planner, DESPOT uses either 𝐹𝑀𝑀 (Section
3.4) or 𝑃𝑅𝑀 (Section 3.5) to obtain a path for the scenarios at a
belief node. To evaluate the lower bound at that belief node, the
roll-out policy executes a reactive controller to determine speed
over that path.

4.4 Experimental Details
For each scenario, we ran sets of 100 different experiments with dif-
ferent pedestrian density in the environment. The number of pedes-
trians in the environment varied from 100 to 400 (in increments of
100). In each experiment, pedestrians were assigned random start-
ing points and intentions. The performance of different planners
was compared for that sampled environment under the same ran-
dom seed for noise in simulated pedestrian motion. In simulations,
the planning time for each step is 0.5 seconds. For 1𝐷-𝐴∗, we devote
0.15 seconds for path planning, and 0.35 seconds for speed planning
by solving the corresponding POMDP. For 2𝐷-𝐹𝑀𝑀 and 2𝐷-𝑃𝑅𝑀 ,

all of the planning time is devoted to solving the POMDP because
the multi-query motion planning needs to be computed only once
for the environment. The online POMDP solver reasons over the
uncertainty in intentions of 6 nearest pedestrians (i.e. 𝑛𝑝𝑒𝑑 = 6).
DESPOT performs online tree search with 100 sampled scenarios.
We define a trajectory to be unsafe if at any time step the moving
vehicle gets within 1 m distance of a pedestrian.

5 RESULTS AND DISCUSSION
The results from our experiments are summarized in Tables 1 and
2. We computed the average travel time, the number of trajectories
in which the proposed planner outperformed the baseline in terms
of travel time, and the average number of times 𝑆𝐵 action was
executed across 100 experiments for all the planners in different
settings. Since all the planners have the 𝑆𝐵 action in their action
space, they executed safe trajectories in every experiment. All of
the experiments fulfilled the success criteria.

Experimental results for a holonomic vehicle are compiled in
Table 1. The first key observation is that our proposed extended
space planners, 2𝐷-𝐹𝑀𝑀 and 2𝐷-𝑃𝑅𝑀 executed paths that took
less travel time than the baseline without compromising safety. For
each experimental setting, the best travel time is marked in bold in
Table 1. The travel time for 2𝐷-𝐹𝑀𝑀 and 2𝐷-𝑃𝑅𝑀 is comparable
across all the different settings which indicates that the sensitivity
of travel time to the choice of motion planning algorithm used for
generating effective roll-out policies is low. The differences in travel
time for 𝐸𝑆 planners as compared to the 𝐿𝑆 planner across different
settings are characterized in Fig. 4.

The baseline approach took more travel time on average primar-
ily due to the segregation of planning problem in two components.
The hybrid 𝐴∗ algorithm generates a path without considering the
vehicle’s speed and by using ad-hoc techniques to handle uncer-
tainty in pedestrian intention as described in Section 4.3.1. In most
of the cases, the POMDP speed planner (𝐿𝑆) realizes that travel-
ing along this fixed path at the vehicle’s current speed can lead
to a collision. As a result, it decides to either slow down or stop

Table 2: Non-Holonomic Vehicle Planner Performance Comparison.

1𝐷-𝐴∗ 2𝐷-𝑁𝐻𝑉

#Ped Time (in s) # SB action Time (in s) # Outperformed # SB action
100 53.62 ± 0.91 1.84 ± 0.11 36.54 ± 0.45 98 0.26 ± 0.04
200 72.54 ± 1.09 2.84 ± 0.14 43.79 ± 0.85 96 1.04 ± 0.09
300 95.43 ± 1.74 3.62 ± 0.15 62.37 ± 1.57 95 2.55 ± 0.12
400 110.41 ± 2.32 3.98 ± 0.15 81.07 ± 1.80 95 3.54 ± 0.13

This table shows the average travel time, the number of trajectories in which the proposed planner outperformed the baseline in terms of travel time, and the
average number of 𝑆𝐵 actions over 100 trials under Scenario 1. The standard error of the mean is indicated for averaged quantities. The best travel time and

the least amount of 𝑆𝐵 action in each row are bolded.

(a) 1D-A* (b) 2D-FMM (c) 2D-PRM

(d) 1D-A* (e) 2D-FMM (f) 2D-PRM

(g) 1D-A* (h) 2D-FMM (i) 2D-PRM

Figure 3: Trajectories executed by the holonomic vehicle using different planners across all 100 experiments in Scenario 1 (Fig.
3a, 3b, 3c), Scenario 2 (Fig. 3d, 3e, 3f), and Scenario 3 (Fig. 3g, 3h, 3i) with 400 pedestrians in the environment.

which increases the travel time. The decoupling of heading angle
and speed forces the baseline approach to reason over uncertainty
along just one path and the vehicle fails to perform efficient motion
between moving pedestrians. On the other hand, the 𝐸𝑆 planners
reason over uncertainty along multiple paths (Fig. 1) and often
manage to find a path where they do not have to slow down or
stop. Moreover, it is possible that the hybrid 𝐴∗ path might not be
obtained at every time step within the limited computation time.
As a result, the system has to estimate the speed over the old path
which was constructed considering the position of pedestrians and

belief over their intention at the previous time step. This leads to
sub-optimal decision making.

Another important observation is that both proposed planners
outperformed the baseline approach in the metric of travel time at
least 91% of the times across all the different settings. In densely
crowded environments, moving to empty spaces nearer to the
agent’s goal (instead of staying idle and letting pedestrians pass)
is an intuitively good strategy. This behavior is visible from the
trajectories executed by 2𝐷-𝑃𝑅𝑀 and 2𝐷-𝐹𝑀𝑀 (Fig.3). They cover
a wider area of the environment than 1𝐷-𝐴∗. However, doing so

Figure 4: ES planners consistently outperform LS plan-
ners across each scenario, whether for holonomic or non-
holonomic agents.

can sometimes also result in the vehicle momentarily getting stuck
behind a group of pedestrians that it did not reason over earlier.
This happened in the few experiments where the proposed planners
took more travel time.

The extended space planners executed more 𝑆𝐵 actions on av-
erage than the baseline for settings with high pedestrian density
under all the scenarios. This is mainly due to the availability of
more choices of 𝛿𝜃 for 𝐿𝑆 (36 choices) than 𝐸𝑆 (8 choices). The
result with the least amount of 𝑆𝐵 action is marked in bold for
every setting in Table 1. For low pedestrian density, 𝐸𝑆 planners
took less or almost the same amount of 𝑆𝐵 actions as the 𝐿𝑆 plan-
ner. Densely populated environments have less free space for the
vehicle to navigate. In that situation, having more choices for 𝛿𝜃
allows the 𝐿𝑆 planner to find a path to move to open spaces that
avoids collision with any pedestrian. On the contrary, due to limited
choices, the 𝐸𝑆 planner decides to execute the 𝑆𝐵 action under the
same situation. This is not a limitation directly due to extending
the action space; rather it is a limitation of the particular online
tree search algorithm, DESPOT, which does not work well for large
or continuous action space problems. This demonstrates a need
for online POMDP solvers that can better solve continuous action
space problems which is an active area of research [27].

We also performed experiments for a non-holonomic vehicle and
compared the performance of 𝐿𝑆 and 𝐸𝑆 planners under Scenario
1. The vehicle is modeled as a Dubin’s car with a max speed of
4 𝑚/𝑠 . For 𝐿𝑆 , the hybrid 𝐴∗ path planner has 19 search actions
from −45° to 45° at 5° intervals, and the POMDP model is same as
that for a holonomic vehicle. For 𝐸𝑆 , an effective roll-out policy
in the absence of static obstacles is to apply a steering angle 𝛽

that modifies the vehicle’s heading angle to follow a straight line
path to the goal (subject to steering angle constraints). 𝛿𝑅𝑂 can be
calculated from 𝛽 using the vehicle dynamics. The straight line roll-
out is not effective in scenarios 2 and 3 as it could lead to collisions
with static obstacles. Under those scenarios, a possible effective
roll-out policy for a non-holonomic vehicle would be to execute a
reactive controller over the path generated using the Fast Marching
Square method [3].

The experimental results with the non-holonomic vehicle are
summarized in Table 2. The 𝐸𝑆 planner (2𝐷-𝑁𝐻𝑉) took less travel
time on average than the 𝐿𝑆 planner (1𝐷-𝐴∗) across each of the dif-
ferent settings, outperforming the baseline approach in this metric

(a) 1D-A* (b) 2D-NHV

Figure 5: Trajectories executed by the non-holonomic vehi-
cle using different planners across all 100 experiments in
Scenario 1 with 400 pedestrians in the environment.

in at least 95% of the simulations. The sub-optimality in decision
making due to the decoupling of heading and speed becomes more
significant when the vehicle can travel at higher speeds. This is
visible from the larger reduction in the travel time ratio for the
non-holonomic vehicle (max speed = 4𝑚/𝑠) in comparison to the
holonomic vehicle (max speed = 2𝑚/𝑠) across the different pedes-
trian densities (Fig. 4). Since the number of choices of 𝛿𝜃 for 𝐿𝑆
planner (19 choices) is not significantly more than the number of
choices for the 𝐸𝑆 planner (8 choices) for the non-holonomic vehi-
cle, and due to decoupling, the 𝐿𝑆 planner executes more 𝑆𝐵 actions
than the 𝐸𝑆 planner on average across all settings. The 𝐸𝑆 planner
plans effectively and finds paths by covering a much wider space
of the environment without having to suddenly stop (Fig. 5).

6 CONCLUSION
This work presents an intention-aware navigation system that uses
an extended-space POMDP planner to generate efficient naviga-
tion policies in the presence of uncertainty introduced by other
agents in the environment. In particular, for an autonomous vehi-
cle navigating among pedestrians, solving a POMDP that controls
all degrees of freedom(i.e. speed and heading), instead of a select
few (i.e. speed over the Hybrid 𝐴∗ path) results in faster trajec-
tories. This additional control parameter enlarges the reachable
state space and raises the need for practical roll-out policies from
these states to find the sparse positive reward during the online
tree search. Our system uses multi-query motion planning tech-
niques like Fast marching Methods or Probabilistic Roadmaps to
efficiently generate effective roll-out policies. Our results show that
the proposed extended space POMDP planners enable effective and
safe autonomous driving in complex crowded environments. They
also indicated that the choice of the motion planning technique for
offloading the task of generating effective roll-out policies does not
affect the planner’s performance significantly.

ACKNOWLEDGMENTS
This work was funded in part by NSF NRI Award #1830686.

REFERENCES
[1] Ali-Akbar Agha-Mohammadi, Suman Chakravorty, and Nancy M Amato. 2014.

FIRM: Sampling-based feedback motion-planning under motion uncertainty and

imperfect measurements. International Journal of Robotics Research 33, 2 (2014),
268–304.

[2] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li
Fei-Fei, and Silvio Savarese. 2016. Social lstm: Human trajectory prediction in
crowded spaces. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 961–971.

[3] César Arismendi, David Álvarez, Santiago Garrido, and Luis Moreno. 2015. Non-
holonomic motion planning using the fast marching square method. International
Journal of Advanced Robotic Systems 12, 5 (2015), 56.

[4] Haoyu Bai, Shaojun Cai, Nan Ye, David Hsu, and Wee Sun Lee. 2015. Intention-
aware online POMDP planning for autonomous driving in a crowd. In 2015 ieee
international conference on robotics and automation (icra). IEEE, 454–460.

[5] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. 2017. Julia:
A fresh approach to numerical computing. SIAM review 59, 1 (2017), 65–98.
https://doi.org/10.1137/141000671

[6] Maxime Bouton, Akansel Cosgun, and Mykel J Kochenderfer. 2017. Belief state
planning for autonomously navigating urban intersections. In 2017 IEEE Intelli-
gent Vehicles Symposium (IV). IEEE, 825–830.

[7] Adam Bry and Nicholas Roy. 2011. Rapidly-exploring random belief trees for
motion planning under uncertainty. In IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 723–730.

[8] Panpan Cai, Yuanfu Luo, David Hsu, and Wee Sun Lee. 2021. HyP-DESPOT: A
hybrid parallel algorithm for online planning under uncertainty. The International
Journal of Robotics Research 40, 2-3 (2021), 558–573.

[9] Yufan Chen, Miao Liu, Shih-Yuan Liu, Justin Miller, and Jonathan P How. 2016.
Predictive modeling of pedestrian motion patterns with bayesian nonparametrics.
In AIAA guidance, navigation, and control conference. 1861.

[10] Yu Fan Chen,Michael Everett, Miao Liu, and Jonathan PHow. 2017. Socially aware
motion planning with deep reinforcement learning. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 1343–1350.

[11] Yu Fan Chen, Miao Liu, Michael Everett, and Jonathan P How. 2017. Decentralized
non-communicating multiagent collision avoidance with deep reinforcement
learning. In 2017 IEEE international conference on robotics and automation (ICRA).
IEEE, 285–292.

[12] Yu Fan Chen, Shih-Yuan Liu, Miao Liu, Justin Miller, and Jonathan P How. 2016.
Motion planning with diffusion maps. In 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 1423–1430.

[13] Hao-Tien Lewis Chiang, Jasmine Hsu, Marek Fiser, Lydia Tapia, and Aleksandra
Faust. 2019. RL-RRT: Kinodynamic motion planning via learning reachability
estimators from RL policies. IEEE Robotics and Automation Letters 4, 4 (2019),
4298–4305.

[14] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James Diebel. 2008.
Practical search techniques in path planning for autonomous driving. Ann Arbor
1001, 48105 (2008), 18–80.

[15] Maxim Egorov, Zachary N. Sunberg, Edward Balaban, Tim A. Wheeler, Jayesh K.
Gupta, and Mykel J. Kochenderfer. 2017. POMDPs.jl: A Framework for Sequential
Decision Making under Uncertainty. Journal of Machine Learning Research 18, 26
(2017), 1–5. http://jmlr.org/papers/v18/16-300.html

[16] Aleksandra Faust, Kenneth Oslund, Oscar Ramirez, Anthony Francis, Lydia Tapia,
Marek Fiser, and James Davidson. 2018. Prm-rl: Long-range robotic navigation
tasks by combining reinforcement learning and sampling-based planning. In
2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
5113–5120.

[17] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. 1997. The dynamic window
approach to collision avoidance. IEEE Robotics & Automation Magazine 4, 1 (1997),
23–33.

[18] Constantin Hubmann, Marvin Becker, Daniel Althoff, David Lenz, and Christoph
Stiller. 2017. Decision making for autonomous driving considering interaction
and uncertain prediction of surrounding vehicles. In 2017 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 1671–1678.

[19] Constantin Hubmann, Jens Schulz, Marvin Becker, Daniel Althoff, and Christoph
Stiller. 2018. Automated driving in uncertain environments: Planning with
interaction and uncertain maneuver prediction. IEEE Transactions on Intelligent
Vehicles 3, 1 (2018), 5–17.

[20] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. 1996. Proba-
bilistic roadmaps for path planning in high-dimensional configuration spaces.
IEEE transactions on Robotics and Automation 12, 4 (1996), 566–580.

[21] Michael Kearns, Yishay Mansour, and Andrew Y. Ng. 2002. A Sparse Sampling Al-
gorithm for Near-Optimal Planning in LargeMarkov Decision Processes. Machine
Learning 49, 2 (01 Nov 2002), 193–208.

[22] Cameron F. Kerry and Jack Karsten. 2017. Gauging Investment in Self-
Driving Cars. Brookings (2017). https://www.brookings.edu/research/gauging-
investment-in-self-driving-cars/

[23] Minkyu Kim, Jaemin Lee, Steven Jens Jorgensen, and Luis Sentis. 2018. Social
Navigation Planning Based on People’s Awareness of Robots. arXiv preprint
arXiv:1809.08780 (2018).

[24] Yoshiaki Kuwata, Justin Teo, Gaston Fiore, Sertac Karaman, Emilio Frazzoli,
and Jonathan P How. 2009. Real-time motion planning with applications to
autonomous urban driving. IEEE Transactions on control systems technology 17, 5
(2009), 1105–1118.

[25] Yiyuan Lee, Panpan Cai, and David Hsu. [n.d.]. MAGIC: Learning Macro-Actions
for Online POMDP Planning. ([n. d.]).

[26] Jing Liang, Utsav Patel, Adarsh Jagan Sathyamoorthy, and Dinesh Manocha.
2020. Realtime collision avoidance for mobile robots in dense crowds using
implicit multi-sensor fusion and deep reinforcement learning. arXiv preprint
arXiv:2004.03089 (2020).

[27] Michael H. Lim, Claire J. Tomlin, and Zachary N. Sunberg. 2021. Voronoi Pro-
gressive Widening: Efficient Online Solvers for Continuous Space MDPs and
POMDPs with Provably Optimal Components. In IEEE Conference on Decision
and Control (CDC).

[28] Pinxin Long, Tingxiang Fan, Xinyi Liao, Wenxi Liu, Hao Zhang, and Jia Pan.
2018. Towards optimally decentralized multi-robot collision avoidance via deep
reinforcement learning. In 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 6252–6259.

[29] Yuanfu Luo, Panpan Cai, Aniket Bera, David Hsu, Wee Sun Lee, and Dinesh
Manocha. 2018. Porca: Modeling and planning for autonomous driving among
many pedestrians. IEEE Robotics and Automation Letters 3, 4 (2018), 3418–3425.

[30] Cade Metz. 2021. The Costly Pursuit of Self-Driving Cars Continues On. And
On. And On. The New York Times (2021). https://www.nytimes.com/2021/05/24/
technology/self-driving-cars-wait.html

[31] Abduallah Mohamed, Kun Qian, Mohamed Elhoseiny, and Christian Claudel.
2020. Social-stgcnn: A social spatio-temporal graph convolutional neural network
for human trajectory prediction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 14424–14432.

[32] Stanley Osher and James A Sethian. 1988. Fronts propagating with curvature-
dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of
computational physics 79, 1 (1988), 12–49.

[33] Christos H. Papadimitriou and John N. Tsitsiklis. 1987. The Complexity of Markov
Decision Processes. Mathematics of Operations Research 12, 3 (1987), 441–450.

[34] Adarsh Jagan Sathyamoorthy, Jing Liang, Utsav Patel, Tianrui Guan, Rohan
Chandra, and Dinesh Manocha. 2020. Densecavoid: Real-time navigation in
dense crowds using anticipatory behaviors. In 2020 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 11345–11352.

[35] Bill Schiller, Vassilios Morellas, and Max Donath. 1998. Collision avoidance for
highway vehicles using the virtual bumper controller. In Proceedings of the IEEE
International Symposium on Intelligent Vehicles. IEEE, New York, 28–30.

[36] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[37] James Albert Sethian. 1999. Level set methods and fast marching methods: evolv-
ing interfaces in computational geometry, fluid mechanics, computer vision, and
materials science. Vol. 3. Cambridge university press.

[38] David Silver and Joel Veness. 2010. Monte-Carlo Planning in Large POMDPs. In
Advances in Neural Information Processing Systems. 2164–2172. http://papers.
nips.cc/paper/4031-monte-carlo-planning-in-large-pomdps.pdf

[39] Weilong Song, Guangming Xiong, and Huiyan Chen. 2016. Intention-aware au-
tonomous driving decision-making in an uncontrolled intersection. Mathematical
Problems in Engineering 2016 (2016).

[40] Ke Sun, Brent Schlotfeldt, George J Pappas, and Vijay Kumar. 2020. Stochastic
Motion Planning Under Partial Observability for Mobile Robots With Continuous
Range Measurements. IEEE Transactions on Robotics 37, 3 (2020), 979–995.

[41] Zachary Sunberg and Mykel J. Kochenderfer. 2018. Online Algorithms for
POMDPs with Continuous State, Action, and Observation Spaces. In International
Conference on Automated Planning and Scheduling.

[42] Zachary N. Sunberg, Christopher J. Ho, and J. Kochenderfer, Mykel. 2017. The
Value of Inferring the Internal State of Traffic Participants for Autonomous
Freeway Driving. In American Control Conference (ACC).

[43] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, Andrei
Aron, James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel Hoffmann,
et al. 2006. Stanley: The robot that won the DARPA Grand Challenge. Journal of
field Robotics 23, 9 (2006), 661–692.

[44] Alberto Valero-Gomez, Javier Gómez, Santiago Garrido, and Luis Moreno. 2013.
Fast Marching Methods in Path Planning. IEEE Robotics & Automation Magazine
20 (12 2013), 111 – 120.

[45] Jur Van Den Berg, Pieter Abbeel, and Ken Goldberg. 2011. LQG-MP: Optimized
path planning for robots withmotion uncertainty and imperfect state information.
The International Journal of Robotics Research 30, 7 (2011), 895–913.

[46] Dizan Vasquez, Thierry Fraichard, and Christian Laugier. 2009. Growing hidden
markov models: An incremental tool for learning and predicting human and
vehicle motion. The International Journal of Robotics Research 28, 11-12 (2009),
1486–1506.

[47] Nan Ye, Adhiraj Somani, David Hsu, and Wee Sun Lee. 2017. DESPOT: Online
POMDP Planning with Regularization. Journal of Artificial Intelligence Research
58 (2017), 231–266.

https://doi.org/10.1137/141000671
http://jmlr.org/papers/v18/16-300.html
https://www.brookings.edu/research/gauging-investment-in-self-driving-cars/
https://www.brookings.edu/research/gauging-investment-in-self-driving-cars/
https://www.nytimes.com/2021/05/24/technology/self-driving-cars-wait.html
https://www.nytimes.com/2021/05/24/technology/self-driving-cars-wait.html
http://papers.nips.cc/paper/4031-monte-carlo-planning-in-large-pomdps.pdf
http://papers.nips.cc/paper/4031-monte-carlo-planning-in-large-pomdps.pdf

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	3 TECHNICAL APPROACH
	3.1 POMDP Preliminaries
	3.2 Problem formulation as a POMDP
	3.3 Solving POMDPs Online with DESPOT
	3.4 Fast Marching Method for Multi-Query Path Planning
	3.5 Probabilistic Roadmaps for Multi-Query Path Planning
	3.6 Tracking POMDP Belief

	4 EXPERIMENTS
	4.1 Simulation Environment
	4.2 Experiment Scenarios
	4.3 Planners
	4.4 Experimental Details

	5 RESULTS AND DISCUSSION
	6 CONCLUSION
	Acknowledgments
	References

