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Abstract—Constrained motion planning algorithms generate
solutions to planning problems that require robots to adhere
to rigid behavioral restrictions. Traditionally, these problems
are segmented and framed as requiring adherence to a sin-
gle set of constraints throughout, a limiting compromise that
results in motion planning over a single manifold. When a
trajectory must comply with multiple sets of constraints in a
single motion planning problem, each constraint set defines an
implicit manifold within the planning space and solutions must
sequentially traverse manifold intersections. This is known as
a Sequential Manifold Planning Problem (SMPP). The choice
of manifold intersection points plays a critical role in solving
SMPPs, as a particular intersection point may not admit a
path to a subsequent constraint manifold, preventing motion
planners from finding solutions in reasonable or even finite
time. Many works assume intersection point independence, re-
quiring all intersection points to lead to viable solutions. We
show how Learning from Demonstration models intrinsically
define an SMPP and contribute an algorithm for Intersection
Point Dependence Relaxation using distributions extracted from
these models near constraint set transitions. These distributions,
learned from human demonstrations, supply candidate points for
an optimization process to identify intersection points that admit
solutions, solving SMPPs with greater efficiency than uninformed
approaches and relaxing intersection point dependence even when
the demonstrator is noisy (i.e., out of adherence to constraints).

Index Terms—Learning from Demonstration; Constrained Mo-
tion Planning

I. INTRODUCTION

Sampling-based motion planning algorithms are widely
used in robotics to generate trajectories that accommodate a
variety of objectives in their search (e.g. collision avoidance) to
produce desirable behavior. However, special accommodation
is required to support adherence to hard constraints (e.g.,
planning on a surface). In human-robot interaction scenarios,
constraints are critical for ensuring safe and effective collab-
oration between humans and robots, where the consequences
of constraint violations may include safety risks or task fail-
ures. Constrained motion planning techniques exist to address
this problem, but they traditionally focus on a single set of
constraints that forms a single (implicitly defined) manifold
during planning. In many HRI tasks, the set of constraints that
must be satisfied can change dynamically as the interaction
unfolds—for example, as a robot transitions between subtasks
or adapts to human actions. Adherence to multiple sets of
constraints that change within a single trajectory is more
challenging, as the planner must find both the intersections

Fig. 1: A robot manipulator executing a cable-routing task in
a shared workspace. The task has changing constraints that
define a Sequential Manifold Planning Problem. The end-
effector orientation is a constrained throughout the task to
avoid twisting the cable. Three centering constraints require
the manipulator to sequentially visit each cable guide.

between implicit manifolds and a sequence that eventually
leads to the goal state of the planning problem. This is called
a Sequential Manifold Planning Problem (SMPP) [15], and
they are quite common in robotics domains (Figure 1). While
existing motion planning work in this area has focused on the
intersection independent class of SMPP, where all manifold
intersection points lead to viable solutions, we introduce a
method applicable to all SMPPs.

In this work, we show how robot Learning from Demon-
stration (LfD) techniques that incorporate constraints define
an SMPP. Despite the utility of demonstrations, many types
of constraints require precise angles, forces, or positions
over time that humans are unlikely to be able to adhere to.
We show how the resultant learned models of even noisy
or imprecise human demonstration can be used to obtain a
set of distributions that allow for efficiently solving SMPPs,
guiding the selection of constraint manifold intersection points
and providing a method to bias sampling toward constraint-
compliant candidate points for planning. Our contributions are
as follows:



• A method for combining learned models of human
demonstration data with constrained motion planning
methods to both define and efficiently solve SMPPs
without the intersection point independence assumption
through Intersection Point Dependence Relaxation.

• A quantitative evaluation showing how learned distribu-
tions increase sampling efficiency for constrained motion
planners that use Jacobian projection-based methods for
producing on-manifold samples. This supports the above
contribution by increasing planning efficiency in scenar-
ios that use human demonstration data that need only be
close to constraint-compliant.

II. PRELIMINARIES

A. Constrained Learning from Demonstration

Robot Learning from Demonstration (LfD) methods learn
models from observation-borne data to create controllers that
imitate the underlying skill being demonstrated [4]. Humans
provide these data through some mode of demonstration (i.e.,
kinesthetic, teleoperated, or observed) [2]. Our work leverages
information already captured by constrained LfD approaches
[3, 38, 1]. These data are used to learn a sequential waypoint
(i.e. keyframe) model of a skill through the clustering of
demonstrated trajectories. Keyframe models produce a se-
quence of waypoints that serve as a coarse trajectory for the
robot to follow, with inter-waypoint motion specified by a
feedback controller, motion planner, or trajectory optimization
technique. For constrained motion planning, we augment the
traditional keyframe model [1] by enabling demonstrators to
annotate constraints over keyframe segments during a demon-
stration, as in [38]. These constraints (e.g., “the teapot must
remain upright until over the cup”) provide the learner with
additional information that helps capture a more complete
model of the task.

Keyframe LfD algorithms produce a graph-based skill rep-
resentation useful for the execution of (constrained) robot
behaviors. Each node (keyframe) represents a distribution
learned from demonstration data, with directed edges derived
from temporal sequence. Throughout this work we refer to
keyframes that capture a change in constraints as transition
keyframes and keyframes that capture the continuation of
constraints between transitions as intermediate keyframes [38].

B. Constrained Motion Planning

Sampling-based motion planning algorithms, such as prob-
abilistic roadmaps [22], rapidly-exploring random trees [35],
and their variants provide a robust toolkit to solve many
planning problems [33, 11]. However, certain problems that
place hard constraints on the motion of the robot challenge
these planners by reducing the feasible solution space [27].
This reduced planning space is defined by Equation 1, which
specifies a manifold (see Berenson et al. [7] and Stilman [43]).
In Equation 1, satisfying the system C(q) = 0 for cost function
C indicates a configuration point q is constraint-compliant.
Notably, if this system requires a mapping of the point q into
some other space (e.g. task space), the system then defines

an implicit manifold space embedded within the configuration
space Q [28]. Otherwise, the space MC is explicit.

MC = {q ∈ Q : C(q) = 0} (1)

To enable sampling-based methods, the majority of con-
strained motion planning techniques rely on the ability to
produce constraint-compliant configuration points during sam-
pling, a process orthogonal to the planning algorithm [27, 29].
Unfortunately, it is not usually possible to sample points
directly from implicit constraint manifolds [43, 7, 29].

To generate points on or near constraint manifolds,
Jacobian-based gradient projection is often used, a sampling
procedure that produces constraint-compliant points while
providing guarantees of probabilistic completeness [7, 29, 43].
Jacobian-based gradient projection is an iterative process that
first computes an error signal for each point. If the error signal
is computed in task space, then it is mapped into configuration
space. The error is used to push a configuration point towards
constraint compliance within an ϵ-ball tolerance. We represent
task space constraints using the Task Space Region framework
of Berenson et al. [7] and use the associated Constrained
Bidirectional RRT (CBiRRT2) motion planner that employs
the Jacobian projection method with a mapping of task space
error signals to configuration space.

C. Biased Sampling in Motion Planning

One of the strategies used by sampling-based motion
planning algorithms to achieve probabilistic completeness is
stochastic sampling, usually through uniform random sampling
of the planning space [45, 32, 34, 23, 6, 7, 19, 33]. However,
a drawback of uniform sampling is the wasted effort of
sampling points that do not contribute to a solution. In the
case of constrained motion planning, this adds additional
unnecessary computation during the projection process. A
common approach to overcome this issue is to bias sampling
toward a distribution that more closely covers an expected
solution space with a small fraction sampled uniformly to
retain probabilistic completeness [19, 8, 49, 46, 24, 10, 9].

D. Sequential Manifold Planning

While constrained motion planning algorithms produce
feasible trajectories over a single set of constraints, many
real-world problems require planning over multiple changing
constraint sets. Task and motion planning (TAMP) methods
(also known as multimodal planning) treat these sequential
problems as solving for connected sequences of subtasks,
each differentiated by environmental conditions [16, 17]. The
combined solutions to the sequence of subtasks create a
solution to the global task or motion planning problem, just
as in SMPPs.

TAMP methods must balance between planning at the task
level and planning at the motion level where each plan informs
the other. Dantam et al. introduce a method for iteratively
refining a task and motion plan by alternating generation
of constraint-compliant task plans and feasible motion plans
[13, 14]. Similarly, Kaelbling and Lozano-Pérez introduce



a method that incorporates task and motion planning with
planning for perceptual actions that reduce uncertainty [21].
With many sampling-based TAMP methods, the ability to
sample efficiently has significant impact on the efficiency of
the method. [48]. Consequently, Kingston et al. introduce a
method that improves sample-efficiency by using experience to
solve foliated multi-modal problems[31]. Our work improves
sample efficiency similarly via learning from demonstrations.

Switching between modes in most multimodal planners
occurs under specific conditions, such as contact events or
precise task changepoints. In other words, transitions between
modes are usually pre-defined points that are associated with
a change in constraints, agent behavior, or environment. For
example, in Englert et al. [15] intersection points are chosen as
discrete contact events such as picking up an object. In contrast
to prior work that requires explicit changepoint specification
[30, 26], our proposed method learns these changepoints as a
combination of implicit constraint manifold intersections, user
demonstrations, and explicit keyframe constraint annotations.

E. Intersection Point Dependency

SMPPs are particularly difficult because a solution trajectory
must traverse a sequence of intersecting constraint manifolds,
each representing a unique set of constraints applied during
a portion of the trajectory. To produce trajectories follow-
ing these constraints, points on the intersections of adjacent
overlapping manifolds must be chosen such that intersection
points on subsequent manifolds are reachable until a goal state
is achieved. These general SMPPs are challenging because
planning for discrete changes in constraints may not rely on
obvious changepoint events, for example if the constraint set
changepoints are only defined through keyframes in an LfD
planning graph. Providing a solution to this class of problem
is a main contribution of this work: a method that uses the
same annotated keyframe LfD models that implicitly define a
generalized SMPP to assist with solution generation.

The constraint manifolds that specify an SMPP may be
disjoint or foliated [15, 31, 37, 25]. A foliated manifold is
composed of submanifolds or leaves, where each leaf does not
intersect with any other leaves. A prior or subsequent manifold
might only intersect with a subset of these leaves, defining
Intersection Point Dependence (IPD). Choosing a leaf from
each set of constraint manifolds that intersects with adjacent
constraint manifolds is key to solving the complete SMPP
[18]. Our method uses human demonstration data as a heuristic
to relax IPD SMPPs into intersection-point independent (IPI)
SMPPs. Adopting the style of figures of Englert et al. [15],
Figure 2 provides an example SMPP for both intersection
independent and intersection dependent cases.

III. IPD-RELAXATION FROM HUMAN DEMONSTRATION

We propose that learned models from human demonstra-
tions of approximate solutions to an SMPP provide enough
of a heuristic to relax an intersection point dependent
SMPP to an intersection point independent SMPP with
high probability, reducing the set of possible intersection
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Fig. 2: Top: Planning success in Intersection Point Independent
(IPI) SMPPs does not depend on the choice of intersection
point. Bottom: An Intersection Point Dependent (IPD) SMPP
where some intersection points result in planning failure.

points to viable choices only. We introduce an optimization
process that directs the appropriate choice of intersection
points using this information, in conjunction with biased
sampling, such that the planner efficiently produces feasible
solutions. We refer to this entire process as Intersection Point
Dependence Relaxation.

A. ρ-usefulness and the Ω-set

To relax an IPD SMPP to an IPI SMPP, one must restrict
the set of points drawn from manifold intersections strictly to
those that can result in a feasible planning solution. We take
inspiration from the definition of δ-usefulness in Rakita et al.
[41] to define ρ-useful points as the set of points Qρ that
are distance at most ρ from a solution path τi for a planning
problem on manifold Mi given a planning space CMi∩Cfree,i

for the ith planning segment. Mathematically, ρ-useful points
are Qρ = {q ∈ CMi

∩ Cfree; d(q, τi) ≤ ρ}. Calculating an
optimal distance for ρ is as difficult as solving the SMPP,
but in practice setting it to a value that encompasses the
distance between an approximately compliant demonstration
and an exactly complaint trajectory is empirically straight-
forward and forgiving. We propose using a distribution D
learned from demonstration data to bias the sampling such
that P (q ∈ Qρ;x ∼ D) >> P (x ∈ Qρ;x ∼ Qfree): the
probability that a point drawn from the learned distribution D
is in Qρ is much greater than if the point were drawn uniformly
from free configuration space Qfree.

The planner must select intersection points on a foliation
leaf or disjoint constraint manifold intersection such that the
next manifold intersection is reachable. We define an Ω-



point as a point on the intersection of sequentially adjacent
manifolds that enables a feasible solution. The Ω-set is the
collection of all Ω-points. Our insight is that demonstration
data can either directly or nearly provide some of these
points, informing their efficient selection during sampling.
To generate Ω-points, we introduce Omega Optimization: a
novel intersection point generation technique that uses multi-
objective optimization to generate intersection points that max-
imize constraint compliance and minimize the distance from a
corresponding constraint transition keyframe distribution. This
process increases the likelihood that the generated intersection
points are within the ρ-useful set and the Ω-set, conditions
necessary for IPD-Relaxation.

B. IPD-Relaxation Formulation

Extending the SMPP formulation of Englert et al. [15],
we define an IPD-Relaxed Sequential Manifold Planning
Problem in Equation 2. C∗ is the subset of the configuration
space defined by some criteria ∗. τ is a connected sequence
of paths over manifolds 0...i...n that traverses through free
configuration space. Constraint 1 ensures that a point Si+1

i is
an end point of one path on manifold i and the start point of
the subsequent path on manifold i+1 (an intersection point).
Constraint 2 dictates that this point is within the Ωi+1

i set
of Mi ∩Mi+1. Ωi+1

i is the set of all configurations on the
intersection of manifold Mi and subsequent manifold Mi+1,
specifically within the foliation M l∗

i+1 (with l∗ unknown) that
enables planning feasibility. The Ωi+1

i set is inherently a
local subset of the ρ-useful set as indicated by Constraint 3.
Constraint 4 imposes that each segment be associated with
its own collision-free space. Constraint 5 ensures the path is
both collision-free and constraint complaint for manifold Mi.

Let τ = (τ1, . . . , τn) for n planning segments s.t.

1) Si+1
i = τi(1) = τi+1(0) ∀i=1,...,n−1

2) Si+1
i ∈ Ωi+1

i = {q; CMi ∩ CMl∗
i+1

} ∀i=1,...,n−1

3) Ωi+1
i ⊂ {q ∈ CMi ∩ Cfree,i; d(q, τi) ≤ ρ} ∀i=1,...,n−1

4) Cfree,i+1 = Υ(Cfree,i, S
i+1
i ) ∀i=1,...,n−1

5) τi(s) ∈ CMi ∩ Cfree,i ∀i=1,...,n

∀s∈[0,1]

(2)

C. Leveraging Constrained-LfD Keyframe Distributions

Constrained-LfD model distributions can be characterized
as one of two types [38]:

1) Constraint Transition Keyframes: Distributions at con-
straint set transitions, which we use to find productive
constraint manifold intersections (Ω-points).

2) Intermediate Keyframes: Distributions learned between
constraint transition keyframes, which we use to bias
samples to adhere to the demonstrator’s style.

We hypothesize the following effects of integrating LfD
Keyframe distributions into SMPP solvers:

Constraint
Transition
Keyframes

Omega
Optimization

Omega Optimized
Intersection Points 

Constraint Transition Keyframes Supply
Candidate Points for Omega Optimization

Intermediate Trajectory Distributions Bias
Constraint-Compliant Sampling 

Intermediate Trajectory
Distributions

Jacobian
Projection

Fig. 3: A visual overview of this paper’s contributions. Top:
Constraint transition keyframes supply candidate points that are
made constraint-compliant through Omega Optimization, facilitating
IPD-Relaxation. Bottom: Intermediate trajectory distributions bias
sampling during planning to improve planning time efficiency and
adherence to demonstrator style.

1) Sample biasing using intermediate keyframes will both
increase adherence to demonstrator style and boost plan-
ning efficiency by sampling points likelier to be from the
ρ-useful set that are quicker to project onto constraint
manifolds.

2) Sampling points from constraint transition keyframes
will increase planner success by providing candidate
points that optimize consistently into Ω-points using
Omega Optimization, achieving IPD-Relaxation.

D. An Algorithm for IPD-Relaxation

Algorithm 1 uses a series of constraint-annotated keyframes
(e.g., [38]) to achieve IPD-Relaxation. A constrained keyframe
model K is passed as an input. It initializes a planning graph
Gp to generate a sequence of connected plans that solve
the IPD-Relaxed SMPP. The keyframe model K is traversed
sequentially in reverse order using manifold intersections
found by biasing point samples using the constraint transition
keyframes (line 2-3), ignoring the intermediate keyframes.

A candidate intersection point s is drawn from distribution
k.D for a constraint transition keyframe k ∈ K (line 5),
which is passed to the Omega Optimization process (line
11), projecting the point onto the manifold intersection. When
the optimization converges, if the resulting point o is valid
and constraint-compliant it is added to the planning graph
Gp alongside its associated constraints k.C (line 14). Once
an intersection point for each adjacent manifold pair are



Algorithm 1: IPD-Relaxation

Input: K ; // Planning Keyframe Sequence
Output: Gp ; // IPD Relaxed SMPP

1 upcomingC = K[−1].C;
2 for k in K.reversed() do
3 if isConstrained(k) then
4 while ! valid do
5 s← sampleKeyframePoint(k.D);
6 combinedC = set(upcomingC + k.C);
7 if constraintValid(s, combinedC) then
8 o← s
9 break;

10 end
11 o, valid←

omegaOptimize(s, combinedC, k.D);
12 end
13 upcomingC = K.C;
14 Gp.addNode(o, k.C)
15 end
16 end
17 return Gp

collected, a constrained motion planner (e.g., CBiRRT2 [7])
plans trajectory segments to create a global solution trajectory.

IV. EXPERIMENTS

We evaluate our method in four settings, showing improved
sampling efficiency and planning feasibility on IPD SMPPs
when using human demonstrations as a learned heuristic.
We do not evaluate a general audience’s ability to provide
demonstrations in this work: motion efficient demonstration
data was sourced from robotics researchers with experience
using each platform. Despite the demonstrators’ familiarity
with each robot platform, the provided demonstrations do not
precisely adhere to constraints. Specifics on implementation
parameters can be found in the appendix.

Independent Variables:
1) Sampling: Biased sampling from intermediate trajectory

distributions vs. uniform sampling from configuration
space for the CBiRRT2 planner. (Domains II, III, IV)

2) Intersection Point Generation Mechanism: Intersection
points (i.e. the term ‘o’ in line 11, Algorithm 1) for
use in planning will be generated by direct Keyframe
sampling (KF), constraint-only optimization (CO) that
projects sampled points to manifold intersections, and
our method Omega Optimization (OO) that performs
multi-objective optimization to balance distance to
keyframes with projection to manifold intersections.
(Domains II, III, IV)

3) Collision Object: Introduces a collision object that oc-
cludes the most common region demonstrated by users,
creating a ‘narrow corridor’ condition. (Domain III only)

Metrics: Table I describes the metrics used for each domain.
For evaluation Domain I, sampling time shows how biasing

affects planning efficiency, as sampling points on constraint
manifolds is the dominant source of computational overhead in
constrained motion planning. For Domains II, III, and IV, we
follow prior work [15] with metrics for Planning Success Rate,
Path Length, and Planning Time. We introduce two metrics,
Adherence to Style (A2S) and Adherence to Function (A2F),
to assess effectiveness in capturing aspects of the human-
provided signal, as this contribution is a novel fusion of LfD
with SMPPs. All trials were conducted on a PC with AMD
Ryzen 9 5950X CPU with 32GB of RAM.

To provide a maximally fair basis for comparison, inter-
section points generated during IPD-Relaxation that are off-
manifold and beyond the constraint-compliance tolerance (ϵ-
ball) allowed by the CBiRRT2 planner are added into the RRT
with a relaxed constraint tolerance to avoid simply failing to
find a solution entirely. This is reflected in the Adherence to
Function metric, as portions of the plan that traverse these
off-manifold points will not adhere to the constraints.

A. Domain I - Constraint Demonstration for Biasing

In this evaluation domain, we use task-agnostic samples of
constraint-compliant points sourced from three demonstrators
on a Rethink Robotics Sawyer 7-DOF arm (Figure 6). The
first constraint is an orientation constraint (e.g. holding a
cup in an upright position). The second constraint is a line
tracing constraint (e.g. adhesive application) restricting both
orientation and position against a surface. The data from
these demonstrations are used to fit KDE distributions. These
distributions in turn produce candidate samples which are
input into the projection operator in Section II-B.

B. Domain II - Planar Navigation on Explicit Manifolds

Five demonstrators each provided three teleoperated demon-
strations on a holonomic 2D agent navigating from a start point
to a goal point. The constraints are explicit constraints on the
path and/or angle the agent must traverse. Two constraints
restrict the XY position of the agent (blue and red in Figure
4). The third constraint (green in Figure 4) restricts the XY
position as well as the angle of the agent as it must target
the center of a black ‘X’ in the middle of the plane. The
agent must adhere to the red, green, then blue constraints on
its way to the goal. We provide a mathematical definition of
constraints in the appendix.

We use a mixed-integer, non-linear, multiobjective program
solved using the GEKKO solver [5] for Omega Optimization.
While the constraints in this particular domain (including
those with disjoint sets) can be explicitly solved for, choosing
the optimal disjoint set depends on the set’s proximity to a
candidate point. The complete program is specified in the
appendix.

C. Domain III - Manipulator Arm on Implicit Manifolds

Five demonstrators provided three kinesthetic demonstra-
tions of a pouring task (Figure 5-left) on a Rethink Robotics
Sawyer 7-DOF manipulator. For each demonstration, we
record robot configuration and active constraints to generate



TABLE I: Description of Metrics for each Evaluation Domain

Metric Abbreviation Description Domain
Sampling Time n/a Time (seconds) to sample 1000 constrained points 1
Success % Success % % successful planning trials 2, 3, 4
Path Length PL Euclidean path length (Domain 2: pixels, Domain 3: meters) 2, 3, 4
Adherence to Style A2S Dynamic Time Warping (DTW) distance in task space to ‘gold’ demonstration 2, 3, 4
Adherence to Function A2F % of planned trajectory constraint-compliant (no tolerance allowed) 2, 3, 4
Planning Time PT Time (seconds) needed to for successful plan 2, 3, 4

Start
Point

Goal
Point

Holonomic Agent

Green Constraint 
Traverse and Target X

Red-Green Intersection
Omega Optimized Point

Choosing a point from this set
results in planning failure.

Fig. 4: Experiment environment for Domain II [36]. A holonomic
agent (Kuka YouBot) moves from a start point to goal point traversing
three sets of constraints to solve the SMPP.

a CC-LfD keyframe model for each demonstrator. The task
has three constraints: 1) an orientation constraint that requires
the manipulator arm to hold a cup upright to avoid spills; 2)
a height-restricting constraint to maintain a certain distance
above the workbench; 3) a positional constraint requiring
the end-effector to remain centered over a receptacle before
pouring. Mathematical constraint definitions are defined in
the appendix. While it is not possible to analytically verify
whether this task is an SMPP with intersection point de-
pendency without analytic manifold definitions, in ‘collision
object’ trials the environment contains a fixed collision object
creating a narrow gap near the receptacle that generally
forces the end effector wrist to a joint limit, creating (with
high probability) a disjoint manifold intersection between the
first and third constraint. We use PANOC [42] for Omega
Optimization, detailed in the appendix.

D. Domain IV - Multi-Robot Task on Implicit Manifolds

In this domain (Figure 5-right), a demonstrator provided
three demonstrations via teleoperation. The robot state and
active constraints (as specified by the demonstrator) were
recorded at each time step. The task consists of two Rethink
Robotics Sawyer manipulators and a 2-DOF holonomic mobile
base. The robots must transport the cup from one table to the
other by passing the cup from the first manipulator to the
mobile base and then to the second manipulator. This task
has three constraints: 1) An upright orientation constraint on
the cup throughout the task, 2) a positional constraint on the
first robot manipulator and the mobile base for the transfer
of the cup from the manipulator to the mobile base, and 3) a
positional constraint on the mobile base to be near the second

Fig. 5: Experiment environment for Domain III [12] and IV [47].
Left: Pouring scenario. The manipulator must observe an upright
orientation until pouring, maintain a height above the lower collision
object, and remain centered over the target once pouring. Right:
Multi-robot object transfer scenario. The T-Shaped wall and mobile
base handover position constraints induce IPD.

robot manipulator for the transfer of the cup from the mobile
base to the second manipulator. Domain IV uses the Omega
Optimization function from Domain III for each manipulator.

V. RESULTS AND DISCUSSION

We conclusively confirm both hypotheses presented in Sec-
tion III-C, demonstrating increased sample efficiency, success,
and adherence to demonstrator style.

A. Domain I Results - Biased Sampling

As seen in Figures 6a and 6b, distributions learned from
user demonstrations that adhere (even if approximately) to
constraints substantially decrease the sampling time needed
to produce constraint-compliant points. This drop in sam-
pling time exists when just 20% of the candidate points
are drawn from a biased distribution. As the distributions
produce candidate points that are close to the constraint
manifold, less computation is needed to push the candidate
point onto the manifold surface iteratively. Many constrained
motion planning algorithms [7, 43, 39, 40, 20, 44] that use
the Jacobian projection to generate constrained points could
benefit from using human-provided demonstrations to bias
sampling, with benefits that may transfer across dissimilar
tasks or environments. Likewise, biased sampling is useful for
planning problems requiring many constraint-compliant points
for training [39, 40] or for roadmap-based techniques that need
broad coverage of the planning space [29].

B. Domain II Results - Constrained Planar Navigation

Table II shows that the Omega Optimization (OO) inter-
section point generation mechanism performs best in most
metrics given the explicit constraints and intersection point



(a) Domain I - Upright Orientation Constraint: Task-independent demon-
strations of the cup in an upright orientation. Even a small amount of bias
(20%) nearly halves required sampling and projection time.

(b) Domain I - Glue Application Constraint: Task-independent demonstrations
of the robot agent holding the glue bottle in compliant orientations and height
reduces sampling time. Sampling times are capped at 1000 seconds.

Fig. 6: Results for Domain I show the sampling time for biased sampling to find 1000 constraint-compliant points. Candidate samples are
drawn either uniformly or from a biasing distributions to seed Jacobian projection in order to produce constraint-compliant points.

dependency. However, some metrics show little difference
given the simplicity of the domain’s environment.

Planning Success: Planning Success in Domain II relies on
keyframe candidate points (KF & OO conditions). The CO
conditions often choose the wrong intersection point, resulting
in planning failure (≤ 30% success for CO conditions).

Path Length: Across all conditions, Path Length values are
highest (worst) in the CO condition as its compliant points
do not necessarily follow the style of the demonstrated skill,
often resulting in longer segments between intersection points.
OO produced the best path length across all conditions.

Adherence to Style: CO results in poor A2S as intersection
points are not coupled to demonstration data. A2S is the lowest
(best) in the OO and KF conditions.

Adherence to Function: With biased sampling, the CO
intersection point generation mechanism produced a slightly
higher A2F in the rare cases that a successful plan was found.
However, given the simplicity of this evaluation domain, the
A2F values were all quite high (≥ 91%). 100% A2F is unlikely
as the interpolation between points can produce trajectory
segments that are slightly off-manifold.

Planning Time: Planning times for the KF and OO con-
ditions are nearly equivalent, with CO taking significantly
longer. Using intermediate keyframe distributions to bias sam-
pling decreases on-manifold planning time.

C. Domains III & IV Results

Tables III and IV depict the results for Domains III and
IV, respectively. The Omega Optimization algorithm for in-
tersection point generation performs best among the various
conditions, achieving the best score across nearly every metric.

Planning Success: Planning success rates in both domains
display the largest difference between intersection point gener-
ation conditions. In Domain III, Omega Optimization resulted
in ≥ 88% planning success whereas all other intersection
point generation methods never surpass 28%. The inclusion

of a collision object that creates a narrow gap reduces the
planning success across all conditions but reveals the resiliency
of Omega Optimization in maintaining high planning success
rates. Similarly, in the most difficult domain (Domain IV),
Omega Optimization resulted in a substantially higher (≥
30%) planning success rate than other conditions (≤ 2%).

Path Length: In Domain III, Path Length values are high-
est (poor) in the CO condition. Conditions using keyframe-
derived candidate points significantly reduced path lengths
in Domain III, whereas the Omega Optimization condition
slightly reduced path length relative to the Keyframe Sampling
conditions. The resultant path lengths are slightly shorter for
the OO condition than the KF condition, which can produce
slightly off-manifold-intersection points. This trend is less
pronounced in Domain IV. In Domain IV, CO failed to produce
a successful path in any of the 1030 trials, so path lengths
could not be compared.

Adherence to Style: In Domain III, A2S for CO results in
very high (poor) values as intersection points are not coupled
to demonstration data. In this domain, the inclusion of a
collision object results in the biggest contribution to A2S.
The CO condition often produces paths that are constraint
compliant but unusual compared to the style of the human
demonstrators.

Adherence to Function: In Domain III, A2F is ≥99%
across all conditions for both CO and OO intersection point
generation methods within successful trials. However, the
success rate for CO is substantially lower, with 27.2% as the
best success percentage and the lowest 4.0% despite 99.89
and 99.94% A2F percentages respectively. No conditions can
produce constraint-compliant points and segments perfectly,
hence all conditions have <100% A2F.

Planning Time: Planning time is lower when using sampling
bias. This suggests that intermediate trajectory distributions
decrease planning time for successful planning events. In



TABLE II: Metrics across 50 trials per 5 demonstrators (250 trials) for Domain II. Bold: best within sampling-type group (gray/white)
**Only includes successful trials.

Conditions Metrics
Sampling Intersection Point

Generation
Success
Rate (%)

Path Length (pixels)** Adherence to Style
(DTW Score)**

Adherence to
Function (%)**

Planning
Time (s)**

Biased
Keyframe Sampling 100 13758.11 ± 1602.04 21957.74 ± 5643.12 91.0 ± 0.01 0.58 ± 1.81
Constraint Opt. 18.4 16223.32 ± 3928.009 50390.76 ± 34197.85 95.0 ± 0.02 2.05 ± 2.48
Omega Optimization 100 13400.16 ± 1629.37 18242.04 ± 3855.13 93.3 ± 0.01 0.68 ± 0.09

Uniform
Keyframe Sampling 100 14387.65 ± 1481.11 21938.00 ± 5254.53 94.2 ± 0.942 0.59 ± 1.40
Constraint Opt. 30 16682.55 ± 4107.92 82589.71 ± 51390.81 96.0 ± 0.01 5.67 ± 8.40
Omega Optimization 100 13693.93 ± 1472.88 19794.15 ± 4003.43 96.2 ± 0.00 0.92 ± 1.84

TABLE III: Metrics across 25 trials per 5 demonstrators (125 trials) for Domain III. Bold: best within group (gray/white)
**Only includes successful trials.

Conditions Metrics
Collision
Object

Sampling Intersection Point
Generation

Success
Rate (%)

Path Length
(m)**

Adherence to Style
(DTW Score)**

Adherence to
Function (%)**

Planning Time
(s)**

Yes

Biased
Keyframe Sampling 2.4 12.51 ± 1.22 1488.36 ± 644.43 69.65 ± 14.01 43.49 ± 3.18
Constraint Opt. 20.8 26.38 ± 5.87 8961.26 ± 3689.74 99.76 ± .58 49.93 ± 7.08
Omega Optimization 96.0 10.06 ± 2.26 1218.68 ± 395.34 99.99 ± .10 44.18 ± 8.07

Uniform
Keyframe Sampling 0.8 21.15 ± .00 2686.66 ± 0.00 82.28 ± 0.00 94.57 ± 0.00
Constraint Opt. 4.0 63.10 ± 7.28 21921.38 ± 3935.41 99.77 ± .36 86.69 ± 11.87
Omega Optimization 88.0 12.23 ± 3.65 1474.80 ± 471.43 99.98 ± .12 50.50 ± 8.20

No

Biased
Keyframe Sampling 11.2 11.57 ± 1.57 1285.38 ± 442.55 75.09 ± 12.90 41.46 ± 1.28
Constraint Opt. 27.2 24.22 ± 4.54 7434.85 ± 1890.90 99.89 ± 0.38 48.51 ± 7.52
Omega Optimization 100 9.99 ± 2.09 1188.09 ± 362.50 99.94 ± .30 42.79 ± 6.22

Uniform
Keyframe Sampling 0.8 18.01 ± 4.65 2798.93 ± 1457.33 63.27 ± 14.08 75.75 ± 18.2
Constraint Opt. 4.8 58.84 ± 11.86 18547.05 ± 8668.48 99.77 ± .34 92.30 ± 25.62
Omega Optimization 99.2 10.50 ± 2.62 1247.61 ± 433.55 99.98 ± .14 45.40 ± 8.48

TABLE IV: Metrics across 1,030 trials for Domain IV. Bold: best within sampling-type group (gray/white)
**Only includes successful trials.

Conditions Metrics
Sampling Intersection Point

Generation
Success
Rate (%)

Path Length (m)** Adherence to Style
(DTW Score)**

Adherence to
Function (%)**

Planning
Time (s)**

Biased
Keyframe Sampling 2.04 16.72 ± 1.17 1799.50 ± 86.92 99.82 ± 0.48 53.78 ± 4.99
Constraint Opt. 0.0 - - - -
Omega Optimization 33.40 16.70 ± 0.98 1820.84 ± 82.32 99.94 ± 0.12 51.95 ± 0.12

Uniform
Keyframe Sampling 1.65 16.23 ± 0.88 1817.41 ± 58.85 99.90 ± 0.40 52.75 ± 2.64
Constraint Opt. 0.0 - - - -
Omega Optimization 31.85 17.22 ± 1.98 1843.20 ± 145.87 99.95 ± 0.11 52.76 ± 2.77

Domain III, biased sampling has a normalizing effect for
successful planning events across all other conditions. The
trend is similar in Domain IV, albeit with smaller effect. This
confirms that demonstration data is useful for more efficient
planning, assuming approximately compliant demonstrations.

VI. CONCLUSION

These results demonstrate the effectiveness of leveraging
human demonstrations as heuristics for constrained motion
planning in Sequential Manifold Planning Problems, partic-
ularly those with intersection point dependence like many
Task and Motion Planning domains. Our proposed method
for intersection point dependence relaxation produces valid
choices of intersection points far more often when seeded
with points drawn from constraint transition keyframes built
from human demonstrations, even when they are noisy or
imperfect. This is directly evidenced in the illustrative Domain
II and reinforced empirically by achieving top performance
across all metrics in the more complex Domains (III and IV)
in the Omega Optimization condition. Our work also shows

that biasing sampling from LfD models is not only useful
within the IPD-Relaxation algorithm, but also useful for other
constrained motion planning methods and highlights a path
for generalizing families of LfD models to inform efficient
and feasible solutions to a wide variety of TAMP problems.

Limitations: Our proposed method surfaces several areas
for further research. While the environments we selected test
IPD-Relaxation, there could exist planning problems that shift
the ρ-useful set away from the distributions of the CC-LfD
models. This might negatively impact planning performance,
as biased sampling would more often produce off-manifold
points. Similarly, certain environmental conditions might force
users to provide sub-optimal demonstrations, creating a similar
effect of shifting points for Omega Optimization away from
the Ω-set. Future work that could account for such shifts
would make IPD-Relaxation generalize to noisier LfD models.
Measuring the helpfulness of an LfD model for constraints or
task families could improve the generality of our method.
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I. APPENDIX

A. Implementation Details

All evaluations and implementations of the proposed IPD-
Relaxation algorithm were executed on an AMD Ryzen 9
5950X 16-Core Processor with 32 GB of RAM and are
implemented in Python except where noted below.

• Domain II uses a simplified constrained RRT planner
with the following parameters: ϵ-tolerance: 50; extension
distance: 10; max planning time; 60 seconds.

• Domains III and IV use the CBiRRT2 planner [1]
with the following parameters: ϵ-tolerance: 0.15; q-step:
0.35; smoothing time: 5 seconds. In conditions that
use biased sampling, 90% of points are sampled from
the demonstration distributions and 10% of points are
sampled uniformly from the configuration space. For
global planning: Omega Optimization tolerance: 0.075;
max SMPP segment planning time: 30 seconds. Omega
Optimization tolerance is the allowed off-manifold error
of the produced intersection point.

• In Domains II, III, and IV, a bandwidth of 0.15 for Kernel
Density Estimation (KDE) was used to fit keyframes
and intermediate trajectory data, following the CC-LFD
algorithm from Mueller et al. [3]. These parameters
balance performance against time efficiency and were
consistent across all conditions.

In our experiments, we chose to analytically model con-
straints before capturing demonstrations as in [3]. Alternative
implementations of the proposed framework could learn the
constraints from the demonstrations [2]. Constraints do not
necessarily need to be modelled analytically. Our framework
only requires a distance function to the constraint for Omega
Optimization.

B. Constraint Definitions for Experiment Domains II-IV

In this appendix, we specify on how constraints are defined
for each domain in our experiments.

In Domain II, there are three sets of constraints on the robot,
two sets with one position constraint and one set of a position
constraint and an orientation constraint. In this domain, the
constraints are explicitly defined in the robot’s configurations
space (x, y, θ) as follows. We label each set of constraints
according to the color depicted in Figure 4. The black X in
the center of the environment is located at the origin, while x0,
x1, y0, and y1 denote the corners of the line tracing constraints.
y2 denotes the y-location of the goal.

Red: x = x0

y0 ≤ y ≤ y1

Green: x0 ≤ x ≤ x1

y = y0 or y = y1

θ =


arctan

(
y
x

)
− π if x > 0

arctan
(
y
x

)
if x < 0

−π
2

if x = 0 and y > 0
π
2

if x = 0 and y < 0

Blue: x = x1

y2 ≤ y ≤ y1

(1)

In Domains III and IV, we model constraints using the Task
Space Region framework introduced in [1]. Domain III has
3 constraints: 1) an orientation constraint to hold a liquid
vessel in its upright position; 2) a height-restricting constraint
where the end-effector must maintain a certain distance above
the table; 3) a parameterized positional constraint requiring
the end-effector to remain centered over a receptacle (Section
IV-C). Domain IV has these constraints plus two positional
constraints that describe the transfer point of the cup from one
robot to the next (Section IV-D). We model these constraints
in task space using XYZ for position and Roll-Pitch-Yaw
for orientation. Each constraint is defined by a pose and the
allowable bounds in each dimension. We specify the following
positions in meters and orientation angles in degrees. For
example, a positional constraint may consist of a position at
(1, 2, 4) and the bounds may be [−1, 1] in x, [−1, 1] in y, and
[0, 2] in z. This constraint dictates that 0 ≤ x ≤ 2, 1 ≤ y ≤ 3,
and 4 ≤ z ≤ 6. A particular dimension can be ‘unbound’ by
selecting bounds that are larger than the planning environment.
Similarly, an orientation constraint to keep a cup upright within
an end-effector’s grasp would be composed of an orientation
(0, 0, 0) and bounds for roll (−5, 5), pitch (−5, 5), and yaw
(−180, 180). In this example, an orientation of (0, 0, 0) is the
cup perfectly upright, and we allow the cup to tilt up to 5
degrees around the x- or y-axes while rotation around the z-
axis is unconstrained.

C. Omega Optimization Program Details

Omega Optimization in Domain II: For Domain II, we use
the following Omega Optimization program:

min
q=(qx,qy,qθ)

f(q) = w1 ∗A ∗ distIntersectionTop(q)

+ w2 ∗ (1−A) ∗ distIntersectionBottom(q)

+ w3 ∗ distToKeyframePoint(q, qkf )

s.t.
1) withinLimits(q)

2) A ∗ distIntersectionTop(q) ≤ ϵ

3) (1−A) ∗ distIntersectionBottom(q) ≤ ϵ

4) A ∈ {0, 1}

5) qθ = 360− arctan(
ty − qy
tx − qx

) ∗ 180/π
(2)

The function distIntersectionTop(q) denotes the distance
from the configuration q to the intersection of the red manifold



and the top of the two green manifolds depicted in Figure 4.
Similarly, distIntersectionBottom(q) denotes the distance
from the configuration q to the intersection of the red manifold
and the bottom of the two green manifolds. The binary integer
component A (constraint 4) forces the optimizer to determine
which of the two intersection choices minimizes the cost
function (i.e., the optimizer knows about both intersections,
but doesn’t know which is correct a priori). The point q is ini-
tialized as qkf , the candidate value that is generated according
to the sampling technique of the experimental condition being
run. For conditions in which keyframe points are not used, w3

is set to zero to effectively remove the keyframe-associated
term from the cost function. Constraints 2 and 3 enforce that
the value chosen for the intersection point is within some ϵ
tolerance. Constraint 5 ensures that the chosen value for the
angle of the agent is the smallest value.

Omega Optimization in Domain III: As this domain has im-
plicit manifold constraints, a more sophisticated optimization
approach is used for Omega Optimization. Our approach is
inspired by Rakita et al. [4], utilizing the PANOC optimization
library for the Rust programming language [5]. In Equation
3, the cost function terms are each contained within a ‘groove
loss’ function (‘GL()’) that combines linear and Gaussian
terms with the effect of generating much lower costs near
the optimal value for the wrapped function (see [4] for more
details about this function and the standard parameters adopted
by this work). This choice enables the integration of multiple
terms into a multi-objective cost function and enables the
use of finite-differencing methods for generating approximate
gradients within the optimizer.

min
q

f(q) = w1 ∗GL(DistTSRPosition(q))

+ w2 ∗GL(DistTSRQuat(q))

+ w3 ∗GL(DistKFPosition(q, qkf ))

+ w4 ∗GL(DistKFQuat(q, qkf ))

(3)

The DistTSRPosition(q) and DistTSRQuat(q) terms
use the distance conventions of the Task Space Regions
(TSRs) constraint framework introduced by [1]. This conven-
tion is used to easily define XYZ-position and Roll-Pitch-
Yaw orientation constraints (i.e., task space constraints). We
implement the distance for position and orientation sepa-
rately to weigh the terms individually in the cost function.
DistKFPosition(q, qkf ) and DistKFQuat(q, qkf ) restrain
the optimizer so that the converged value does not stray too
far from the candidate sample provided by the constraint
transition keyframe distribution. These terms drive value in
using keyframe distributions as a heuristic for generating
Ω-set compliant points. The assumption is that finding an
intersection point closer to the distribution is more likely
to be in the Ω-set. For experiment conditions that perform
optimization but do not use keyframe data, weights w3 and
w4 are set to zero.
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