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Abstract— Frictionless and understandable tasking is essen-
tial for leveraging human-autonomy teaming in commercial,
military, and public safety applications. Existing technology
for facilitating human teaming with uncrewed aerial vehicles
(UAVs), utilizing planners or trajectory optimizers that in-
corporate human input, introduces a usability and operator
capability gap by not explicitly effecting user upskilling by pro-
moting system understanding or predictability. Supplementing
annotated waypoints with natural language guidance affords
an opportunity for both. In this work we investigate one-
shot versus iterative input, introducing a testbed system based
on government and industry UAV planning tools that affords
inputs in the form of both natural language text and drawn
annotations on a terrain map. The testbed uses an LLM-
based subsystem to map user inputs into additional terms for
the trajectory optimization objective function. We demonstrate
through a human subjects study that prompting a human
teammate to iteratively add latent knowledge to a trajectory
optimization aids the user in learning how the system functions,
elicits more desirable robot behaviors, and ultimately achieves
better task outcomes.

I. INTRODUCTION

Humans and autonomous robots, including uncrewed
aerial vehicles or UAVs, are already working together to
complete tasks in extreme or adverse environments. Humans
and robots each have unique strengths and this work surfaces
insights to better enable the use of those traits to maximize
the effectiveness of human-robot teams. Because of the high
risk involved in close proximity or adverse environment
operations, it is important for the human collaborators to
understand and learn from the decisions that autonomous
teammates are making. Furthermore, in time-critical situa-
tions users must be able to learn how to communicate new
information into the systems with speed, ease, and clarity
while achieving their goals. To motivate our contribution,
we leverage simulated, autonomous UAVs equipped with
infrared sensors to aid firefighters in wildfire discovery.

Wildland firefighters and related professionals and agen-
cies use UAVs, in conjunction with other tools such as
crewed aircraft, satellites [1], and on-the-ground observations
[2], [3], to search high risk areas for potential wildfires,
smoke, and hotspots. The scenario posed to participants is
that of a user collaboratively and iteratively planning a search
route for such a UAV. Standard trajectory optimization [4]
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Fig. 1: User interfaces for the experimental Iterative (top)
and baseline One-Shot (bottom) conditions. Both show a
terrain map with trajectory overlay and allow the user to
draw regions on the map. In the Iterative display, region C
has just been drawn and the next instruction of user text
is ready to send. In the Baseline display, all regions and
instructions are given to the system at once. Terms can be
prioritized via arrows in the Iterative condition or via text in
the One-shot condition.

can maximize the area being searched, however the resulting
trajectory may be difficult to understand and time-consuming
to complete, leading to confusion, mistrust, and risk, and
compounding latency and observability concerns. Existing
autonomous technology in the wild uses fixed cameras to
recognize signs of a fire using computer vision and machine
learning [3]. Firefighters already utilize teleoperated UAVs
to aid in wildland firefighting activities [5]. However using
autonomous robots in collaboration with a human team
remains difficult due to these systems’ lack of transparency



and unpredictability. Robot predictability [6], [7], [8] has
been studied extensively, though not over large spatial scales.
Existing hardware-software methods for planning UAV mis-
sions like these on a 2-D interface, such as those used by
GeoNadir1, allow adding drawn annotations to a map and
other techniques similar to what we use in our interface.

This work introduces and investigates best practices for
iterative communication in situations where a human is
responsible for providing plan or trajectory guidance to a
robot teammate via a 2-D interface (e.g., tablet or screen) as
in Figure 1. We surface insights about human learning within
trajectory optimization objective specification and analyze
human responses to elicited robot behavior that incorporates
human-provided insights. While our particular use case in
this work is wildfire search, any sensor-driven search appli-
cation can benefit from these insights, including search and
rescue, contamination detection, or mapping, among others.
Our system uses natural language and drawn annotations
to incorporate latent human knowledge into a trajectory
optimization to make the system more effective. We allow
the human collaborator to iteratively add information to the
optimizer, and we display the updated trajectory after each
iteration to increase transparency and understanding. We
hypothesize that iterative objective specification improves
mission outcomes and user experience.

In high-risk environments such as wildland firefighting or
related searches for artifacts of interest in dangerous regions,
usability and clarity are of utmost importance. If responders
are not using the right information at the right time, human
lives and other assets can be at risk. Human collaborators in
these situations require improved systems in order to learn
how to avoid acting in ways that are harmful or dangerous.

Our contribution with this work is an objective character-
ization of the benefits of iterative optimization design versus
one-shot design, demonstrated through a human-subjects
experiment and representative human-autonomy teaming sys-
tem. We find that by prompting a user to incorporate latent
knowledge via multiple iterations rather than collectively in
a single iteration, users were better able to convey their
intent, improve task outcomes, and achieve increased system
familiarity through more nuanced observations of input-
output effects. To study these effects, we developed a system
that builds on current state-of-the-art functionality (e.g. [9],
[10]) to allow for iterative, human-in-the-loop input.

II. RELATED WORKS

A. Understanding, Predictability, and Learning

Difficulty in understanding [11] and predicting [7] the
behavior of autonomous systems is an enduring problem
with potentially serious consequences. Efforts to improve
understandability have included embedding social cues into
robot motion [6] and using augmented reality to provide
more context to a robot’s human collaborators [8]. Our
approach to improving overall system understandability is
partially influenced by education theories that emphasize the

1https://geonadir.com/

importance of experience. Constructivism [12] and experien-
tial learning [13] present learning as an active and dynamic
process involving the learner interacting with the world
and comparing their experiences with prior expectations.
Another learning technique known as scaffolding supports
the learner by progressively emphasizing different relevant
task features [14], [15], [16]. The iterative nature of our
experimental condition allows users to gain experience with
the system and adjust their behavior based on what they have
learned from prior iterations. Further, the way in which our
experiment allows for the progressive disclosure of additional
information about the scenario applies these concepts of
constructivism, experiential learning, and scaffolding.

B. Trajectory Optimization Techniques

Work to improve trajectory optimization for UAVs has
led to the development of various algorithms suited to
different applications [17]. Some techniques focus on “time-
optimal” solutions, such as those required in drone racing
[18] or search-and-rescue. Others are based on environmental
requirements like avoiding dynamic obstacles in tight spaces
[19], or mission objectives like finding an efficient path
to collect information from members of a swarm [20].
Techniques that are well-suited for a particular application
may be disastrous for another; for example, some of the
optimizations that produce time-optimal paths are incredibly
computationally expensive, taking anywhere from 20 minutes
to many hours [18]. This technique is infeasible for applica-
tions requiring online planning. Our work provides a method
for humans to transfer their knowledge into constraints
defined within a trajectory optimization problem, and to
adjust these constraints as needed. As such, our system can
accommodate various optimization techniques, but requires
rapid system response for on-demand re-planning as the user
is actively waiting for the results.

Existing literature explores various trajectory optimization
techniques for UAVs over larger physical scales. Some
examples are in precision agriculture [21] and maritime
radar surveillance [22] however, these do not allow for
iterative human input. Search trajectory solutions also ex-
ist for supervised swarms of UAVs in variable autonomy
situations, particularly in search-and-rescue [23]. The prior
work includes the range of teleoperation to full autonomy.
In communications-denied or unreliable environments, the
possibility of teleoperation cannot be assured, so all planning
must happen prior to the mission. This work intentionally
prompts the user to provide all latent information in this
mission planning stage.

C. Including the Human in Planning

Human-in-the-loop and shared autonomy solutions for
trajectory optimization are not uncommon. Ray et al. [24] use
partially-observable Markov decision processes (POMDPs)
to generate a UAV trajectory with human inputs for a
search-and-rescue scenario. This differs from our work in
that, based on the natural language inputs from users, we



choose additional terms for our objective function and as-
sign weights. Existing on-the-market methods for including
latent knowledge into a UAV path planner are limited in
functionality and do not allow for optimization or other
related requirements [10]. Even methods for allowing users
to provide natural language or gesture-based inputs into
the planner ultimately use pre-defined trajectories rather
than providing the flexibility of an optimization [9]. Other
recent work explores the incorporation of real-time obstacle
avoidance by UAVs, using information provided by a human
in the loop [25]. By allowing a human to directly intervene in
the robot trajectory trained by Deep Reinforcement Learning,
UAV control is improved. Our work is complementary to
this. Including human input in trajectory optimization is
especially important for assistive robotics domains [26], [27],
[28]. Prior works prioritize user satisfaction [28] and permit
the user to customize the optimization, including with verbal,
natural language inputs [26]. For time-sensitive scenarios, it
is imperative to balance autonomy with human-in-the-loop
capability to maximizing system functionality and usage.
However, these prior works do not allow for iteratively
augmenting the objectives with additional human input.

D. Large Language Models as a Tool

Recent developments in large language models (LLMs)
have accelerated work to translate natural language instruc-
tions into relevant robot actions. Systems in this area were
developed before the emergence of LLMs [29], [30], but
fluent language models allow for systems that can translate
a wide range of natural language into rewards for the desired
behavior [31]. Some work leverages vision models as well
as LLMs to improve perception of the environment around
a robot and translate it into actions [32], [33]. Other works
more tightly constrain the use of LLMs; Rana et. al. [34]
allow a language model to query a set of potential actions
in the form of a structured graph in order to generate a plan,
and the plan generated by the LLM is validated before it
is executed by the robot. As LLMs continue to improve,
systems like the one presented in this paper will be able to
incorporate even more functionality. Our research builds on
these objectives by using an LLM as a tool for quickly and
accurately translating human language into terms usable for
optimizing a robot’s path.

III. METHODS

Our motivating domain is wildfire search with UAVs. In
this scenario, users were asked to collaboratively plan an
optimized search trajectory for a UAV actively monitoring for
wildfires. We designed the system to explore how allowing
the user to iteratively add information to an optimization can
provide improved outcomes, both with respect to learning
how to use the system and the final search trajectories.

A. Experimental Design

We tested two conditions through an IRB-approved,
between-subjects study (n = 41, median age 33, 24 men,
16 women, 1 non-binary). In each condition, participants

Map Instructions

The burned area does not need to be
searched as it is low risk.

Complex The mountains are unnecessary to search
because they are above the treeline.

The areas near and including the towns
should be searched. They are high risk
because they are highly populated.

The lake is not at risk for fire and does not
need to be searched.

Simple The burned area does not need to be
searched because it is low risk for fire.

The town in the southwest is also a high
fire risk and should be searched.

TABLE I: The instructions that were presented to participants
for each map. Those in the one-shot (baseline) condition
received all of the instructions at once for each map. Those
in the Iterative condition received one instruction at a time,
for a total of 3 iterations.

Fig. 2: Flow of the experiment for both conditions. Partici-
pants received instructions and a chance to practice using the
interface. Then they received new information to incorporate
about the map. While waiting for the system to re-plan,
they performed a distractor task related to reading a weather
report. They did this for both the Simple and Complex maps.

were shown a map with an initial UAV path and given
additional information about the area being searched; the
additional information consisted of a description of a region
along with details about whether it should be searched.
(See Table I for the information provided to participants.)
Their task was to input this additional information into the
planning system by indicating the relevant area(s) on the
map with drawn annotations and by giving natural language
instructions about how the UAV’s path should change by
typing in a text box. The baseline condition was a one-shot
attempt at adding all of the desired information to the map
at once, after which the system performed the optimization.
The experimental condition was an iterative process, where
a participant incrementally learned new information, added
a request to change the path based on this information, and
the system re-optimized the UAV path after each iteration.
The information provided for each map was the same for
both conditions. See Figure 2 for a visual representation of
the flow of the experiment.

1) Maps: Participants conducted this task for two separate
maps, which we call the Simple Map and the Complex



Fig. 3: The two maps, Simple (left) and Complex (right),
presented to participants for their tasks. The black seven-
pointed star enclosed within a rectangle indicates the UAV’s
start and end position. All participants experienced both maps
in a randomized order.

Map, pictured in Figure 3. The Complex Map had 5 areas
addressed in the additional information, and the Simple Map
had 3 areas addressed. The order in which the maps were
presented was randomized in the experiment. The maps were
based on real-life terrain maps of areas at risk for wildfires.

2) Practice Round: In both conditions, participants were
required to complete one practice round that included draw-
ing at least one region on the map enclosing a specific feature
and entering sample text in the text box. In the Iterative
condition, participants could practice changing the priority
of existing terms. In the Baseline condition, the example
text they were prompted to type included a reference to
prioritization. The experiment was run online using Prolific2,
an online recruiting platform for research studies. We hosted
the study instructions and embedded interface on a dedicated
website.

We collected a variety of data during this study in order
to understand how participants used the system in each
condition as well as their understanding, satisfaction, and
perception of usability of the system and its output. Specif-
ically we collected:

• The text instructions users provided to the system.
• The polygonal regions users drew on the map.
• The function terms and parameters that were added to

the original objective.
• All intermediate and final trajectory waypoints.
• Time participants spent on each iteration.
• User satisfaction with the final trajectory.
• User comments about the impact of each new set of

instructions on the trajectory.
• Responses to the System Usability Scale (SUS) [35].

B. Experimental System

The system, summarized in Figure 4, consisted of the
following primary components:

• The web-based user interface that allows for user-drawn
regions on the map and text inputs (Sec. III-B.1).

2https://www.prolific.com/

Fig. 4: Diagram of our experimental system. The user
provides information to the system via the interface. The
processed user input is provided to the LLM-enabled sub-
system that chooses appropriate function terms to add, along
with parameters. The new, full objective function is used to
re-plan the trajectory, and the waypoints are then plotted in
the interface and shown to the user.

• The LLM-based subsystem for choosing additional
terms and parameters for the objective function (Sec.
III-B.2).

• The path planning subsystem that uses trajectory opti-
mization Sec. III-B.3).

1) User Interface: Users were presented with one of two
slightly different interfaces depending on the condition they
were experiencing. These interfaces are pictured in Figure
1. We designed the 2-D interface in Unity3. Both interfaces
displayed a terrain map with the trajectory, a map key and
compass, a text box for user text input, and a summary
of terms in the objective function. To draw regions on the
map, users could click on the map at the desired polygon
vertices, then close the polygon by clicking near the first
vertex. They could erase polygons that they had drawn in
the current iteration. Completed polygons were assigned a
letter, displayed inside the region, so users could refer to
them unambiguously in their text input.

In the Iterative condition, the summary of objective func-
tion terms provided features for turning each term off or
on, as well as for re-prioritizing them. In the One-Shot
condition, participants could indicate the relative priority of
requirements in their input text, and the system would weight
the terms accordingly.

Information that participants were asked to communicate
to the system was provided on the webpage directly above
the Unity display. This information included examples such
as the need to search a specific town or that it was not
necessary to search an area above the treeline (Table I). In-
structions to the participant explained that the system would

3https://unity.com/



incorporate the new information they provided into its plan
for the UAV trajectory. In the interface, participants were
able to communicate information to the system by drawing
polygonal regions on the map and typing text instructions.

2) LLM-Based Subsystem: We implemented the LLM
subsystem using the OpenAI API4 with GPT-4. It took a
custom prompt that we designed and the user-provided text-
polygon inputs and elicited a minimum of one new term
for the objective function and the necessary parameters. We
developed a short menu of functions that would be necessary.
See Table II for function descriptions and more details.
These functions were designed to encourage waypoints into
a region, penalize them for being in a region, or shift points
within a region towards a specific direction.

We designed our LLM prompt to interpret the user’s text
request and then provide the appropriate function name(s)
and parameters to be added to our objective function.
Prompt design research has shown that well-designed system
prompts will elicit very targeted behavior [31], and our
system demonstrated this (see Section IV-C). Our prompts
requested that outputs be formatted as JSON objects. We
provided a template of the JSON formatting and contents
for the system to emulate. Our prompt provided specific
information about each of the possible new functions, what
kinds of parameters to provide, and what input to expect from
the user (both text and the polygon regions). We provided
high level context, explaining that this was part of a trajectory
optimization planning task, and that this would assist in
planning a path for a drone to search for signs of wildfire.
Additionally, we gave the LLM context about the scale,
orientation, and features of the environment.

3) Path-Planning with Trajectory Optimization: The path-
planning subsystem received the outputs from the LLM
subsystem, then re-ran the optimization and displayed the
new trajectory to the user. We chose to use stochastic trajec-
tory optimization for motion planning (STOMP) [4] for our
trajectory optimization algorithm. STOMP is a gradient-free
method that provides new candidate waypoints by adding
perturbations to the existing trajectory and then selects can-
didate waypoints that reduce the trajectory’s cost according
to the provided cost function. Using STOMP allowed for a
considerable amount of control over how long it took to run
the optimization, giving users timely feedback on their input.
Our system was designed to finish each optimization in under
a minute. Note, however, that the nature of our system allows
for the use of any trajectory optimization method that uses
objective or cost functions. Each iteration, in either condition,
adds appropriate terms to the existing objective function, thus
updating the overall objective. This technique can be applied
to both STOMP and to other methods.

The optimization for every user had two cost functions
that they could not remove: Coverage and Validity. Coverage
was computed by finding the distance between each pair of
waypoints in the trajectory to create a graph. We then found
the cost of a minimum spanning tree over the graph. We

4https://platform.openai.com/

added a penalty of 100 if any points were outside the bounds
of the map (i.e., invalidly increasing coverage). Coverage
cost was the MST cost subtracted from the length of the
longest possible path (88.54 for the experiment maps), plus
the penalty for invalid points if any. This function encouraged
waypoints to spread out over as much of the map as possible.
Validity returned a penalty of 1 for each point that was
outside the bounds of the map; points in valid areas had
no additional cost. The initial weights for these functions
could be any real number; their weights relative to each other
and their output range determine how effective they are. The
initial weight for Coverage was 150, and 800 for validity.

User-defined functions were weighted differently in the
iterative and baseline conditions. In the iterative condition,
newly-defined functions were weighted at either 1000 or
1500 (depending on function type), and the n previously-
defined functions were reweighted according to their user-
defined priority: weight = max(800 − 100 ∗ priority, 400)
where 0 ≤ priority ≤ n, and the most-prioritized function
had priority 0. This relative weighing allowed newly-defined
functions to take precedence over functions that had been
incorporated into the trajectory in a previous iteration. In the
baseline condition, the 1 ≤ n ≤ 5 functions were weighted in
priority order as follows: 50∗2n−1−priority. Since all functions
were incorporated at the same time in this condition, their
weights were more similar to each other.

Function name Key parameters Short description

keep radius polygon, Penalize waypoints for
radius being inside the polygon

(or within a given radius)
explore area polygon Reward waypoints within

the given polygon
shift direction polygon, Reward waypoints in

direction, the polygon for shifting in
distance the given direction

TABLE II: Summary of information about the additional
potential functions provided to the LLM-enabled subsystem.
We implemented these functions to be easily added to our
objective function for the trajectory optimization.

C. Distractor Task
While the system was performing each new optimiza-

tion, participants were asked to read hazardous weather
alerts, generated based on those provided by the National
Weather Service, and to complete a form with some specific
information from each report. This task was intended to
simulate related tasks that are completed by UAV operators
in the field. During pilot testing, completing each form took
between 1-3 minutes. Participants completed this task until
the system completed its optimization. Most participants
completed 1-2 forms per iteration. The forms were presented
as another portion of the task to be completed; participants
were not informed this was a distractor task.

IV. RESULTS AND DISCUSSION

We conducted analyses on the objective data from the
experiment, including all of the participants’ inputs to the



system (text and drawn polygons) as well as the intermediate
and final trajectories resulting from the input. We also
analyzed the responses to our post-task survey questions. For
statistical tests, we use a significance level of α = 0.05. Our
analyses set out to capture how well the two versions of the
system enabled participants to learn and understand how to
achieve the most desirable final trajectories. Instructions that
participants were given are organized in Table I.

A. Generating Desirable Trajectories

We analyzed final trajectories as well as the polygons that
the participants drew as parameters for the new objective
function terms. For this, we calculated Positive Waypoint
Compliance; we refer to regions that participants were in-
structed to search as positive search regions, and Positive
Waypoint Compliance was calculated as the number of
waypoints inside positive search regions. To determine the
regions for the Complex Map, we noted that users were
instructed to search the areas “near and including” the
towns. To comply with this information, many participants
drew regions that were substantially larger than just the
immediate town area. Expanding the area of the region for
Positive Waypoint Compliance by a factor of 3 allowed the
calculation to encompass points that fell both close to and
within the towns, in accordance with the phrasing of these
instructions. For the Simple Map, users were instructed that,
“The town in the southwest is also a high fire risk and should
be searched,” however most users drew polygons that were
larger than just the town itself. Thus, for this computation
we expanded the area around the positive search regions by
a factor of 3. The green polygons in Figure 5 represent
this information visually, with the dashed lines indicating
the expanded area. The Positive Waypoint Compliance for
the Simple Map was significantly higher (t(39) = 2.31,
p = .026, Cohen’s d = 0.75) for the Iterative condition
(M = 2.57, SD = 2.38) than for the Baseline condition
(M = 1.20, SD = 1.20).

For the final trajectories, we computed Waypoint Com-
pliance, which was the count of waypoints inside of pos-
itive search regions, subtracting the number of waypoints
in regions participants were instructed to keep out of. We
averaged this score across both maps for each participant.
We found that the final waypoints from the Iterative condition
(M = 1.38, SD = 3.02) were significantly more compliant
(t(39) = 2.72, p = .010, d = 0.87) than those in the Baseline
condition (M = −0.90 SD = 2.27). This result indicates
that the Iterative condition achieved better task outcomes
for complying with the given instructions, supporting our
hypothesis.

In addition to analyzing trajectory waypoints, we exam-
ined the actual polygons that participants drew, which were
used by the objective terms that were added to the original
function. We computed Polygon Compliance by comparing
how much the user-provided polygons overlapped with the
ground truth regions on the map corresponding to each
instruction. For each area users were instructed to search
or keep out of, we defined a ground truth region of the map

Fig. 5: The waypoints from all users’ final trajectories, sep-
arated by condition. Red outlines indicate areas that partici-
pants were told to avoid, and green areas to search. Positive
Waypoint Compliance for the Simple Map was significantly
higher for Iterative than for Baseline (p = .026). Across both
maps, average Waypoint Compliance was significantly higher
for Iterative than for the Baseline condition (p = .010).

corresponding to that area. We calculated what percentage
of each ground truth region was covered by user-defined
polygons, and assigned each user a compliance score based
on how completely they covered the specified areas. The
scores were calculated as follows:

score =



5 covered ≥ 95% of 3 or more regions
4 covered ≥ 70% of 3 or more regions
3 covered ≥ 50% of 3 or more regions
2 covered ≥ 20% of 3 or more regions
1 covered > 0% of 1 or more regions
0 otherwise

We found that for the Complex Map, the Iterative con-
dition (M = 4.7, SD = 0.47) produced higher Polygon
Compliance (t(38) = 2.04, p = .048, d = 0.66) than the
Baseline condition (M = 3.95, SD = 1.57). However, we
found no significant difference in Polygon Compliance for
the Simple Map. This implies that for the Complex Map, with
5 different areas of interest, the Iterative condition provided
a better chance for users to appropriately incorporate the
information they were provided. For the Simple Map, with
only 3 different areas of interest, there was generally high
mean compliance for both groups (M = 4.32, SD = 1.3 for
Iterative, M = 4.15, SD = 1.63 for Baseline). This result



suggests that in a more complex scenario, humans have a
higher likelihood of making mistakes or misunderstanding
instructions when delivered all at once, and that by allowing
a user to iteratively input preference these mistakes can be
reduced. We analogize this to the concept of scaffolding in
the learning sciences; when learning more complex concepts,
the learner benefits from being presented small pieces one
at a time, rather than the whole concept all at once.

B. User Input

Using the logs that were created when users proceeded
between tasks and pages in the experiment, we were able
to analyze how much time they spent on the page where
they received their new information and provided their input
(text and draw annotations on the map). These are detailed
in Table III. Because of the nature of this study as a remote
online experiment, there were some obvious outliers in this
data, suggesting that some users might have ignored the
experiment for some time rather than completing all tasks
as quickly as possible. Due to these effects, we chose to use
median time to more accurately represent the data.

Iterative Baseline
Iter. 1 Iter. 2 Iter. 3 Total

Complex 1:15 1:35 1:36 4:27 3:04
Simple 1:19 1:00 0:59 3:18 2:47

TABLE III: Median times for users to input their additional
information into the interface (text and drawn annotations).

As expected, the Complex Map with slightly lengthier
instructions took longer for participants to provide input for
than the Simple Map. Furthermore, we also see that the total
time spent on either map is somewhat greater in the Iterative
condition than in the Baseline condition (30.8% greater for
the Complex Map, 15.7% greater for the Simple Map). We
saw no significant effect based on which map participants
encountered first.

C. Subsystem Performance

Our system successfully prompted the LLM to choose
the most appropriate function for the user’s requests and to
assign appropriate parameters to that function. Of the 166
total iterations (6 iterations per participant in the Iterative
condition and 2 per participant in the Baseline condition),
the system produced usable output for 157 of them, a 95%
success rate. In 6 of the 9 failures, this was due to users
referencing polygons that did not exist (a total of 2 partici-
pants). When the LLM failed to provide usable outputs, our
system was designed to return the prior trajectory, allowing
the experiment to proceed regardless of LLM failures.

We also analyzed how long the trajectory optimization
took for each iteration. For the Complex Map, the average
duration of the re-planning in the Baseline condition was
86 seconds. For the same map, the average durations in
the Iterative condition were 41s, 49s, and 71s (for each
subsequent iteration). For the Simple Map, the Baseline
optimization took an average of 65s, while the average

Iterative durations were 37s, 46s, and 56s. We designed our
objective function terms with the goal of completing each
optimization within approximately one minute, and these
data show how our system successfully prioritized a rapid
re-planning to maximize the satisfaction of the human in the
loop. This rapid turnaround time reduces the amount of time
that a user spent waiting for the system to re-plan, while they
completed the somewhat mundane distractor task.

D. Subjective Measures

While we collected participant responses to 7-point Lik-
ert questions about their understanding of the system, the
predictability of the optimization, and their satisfaction with
the final trajectory, we did not find significant differences
between the two conditions on these subjective survey mea-
sures. However, because those in the Iterative condition
(M = 4.48, SD = 1.57) did not find the system differently
satisfactory to those in the Baseline condition (M = 4.00,
SD = 2.00), this suggests that the requirement to iteratively
add preferences to the system, while it did take more time,
did not negatively impact their experience. Furthermore,
because of the nature of the conditions, participants in the
Baseline condition completed fewer total distractor tasks (a
minimum of 2) than participants in the Iterative condition
(a minimum of 6). Despite this, the subjective satisfaction
ratings were not significantly different between conditions.

We also obtained insightful descriptive feedback from
participants. Generally, more participants in the Iterative
condition claimed that they had an understanding of how
to use the system to produce their desired results. Some
representative quotes include: “I understood how the tasks
and priority system were effecting [sic] the waypoints,” (for
the Iterative condition), and “On the last map the trajectory
didn’t cover second city that should have been searched and I
couldn’t update the map,” (for the Baseline condition). This
signals that users preferred iterating on the system output,
and requested this feature even in the Baseline condition.

One participant in the Baseline condition stated that by
their second map (which was the Complex Map), they had
learned how to write more clear instructions for the system.
Likewise, a participant in the Iterative condition pointed
out that, “It took me a minute to adjust to how everything
worked,” but that their second map was “spot on.” These
examples indicate the clear learning benefits of being able
to iteratively interact with the system.

V. SUMMARY AND RECOMMENDATIONS

To a novice user, and even one with some experience,
a system like the one presented here can be perceived as
a “black box”. Users might have little to no understanding
of how the system performs its processing and optimiza-
tion tasks. However, by allowing users to iteratively add
information and providing visual feedback on that input
by displaying the subsequent trajectories, the user is af-
forded insight into how the system works. This minimal
transparency, which one might term “translucency,” can aid
in training users how best to use such systems. We show



that iteration results in a preferable optimized trajectory. We
also demonstrate that for a more complex scenario, itera-
tion affords users opportunities to learn how to incorporate
relevant information (here, in the form of map regions).
Ultimately participants indicated that they liked the ability
to iterate on their inputs, and even those in the one-shot
condition asked for a chance to iterate. We also demonstrated
that incorporating the ability to iteratively add latent human
knowledge to a trajectory optimization, aided by an LLM-
enabled subsystem, and mediated via a web-based user inter-
face, can be used for human-autonomy teaming. In critical
situations like wildfire search, it is imperative that users be
able to iteratively incorporate inputs, improving not only the
task outcomes but also user learning and effectiveness.
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