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Abstract— People struggle to form accurate expectations of
robots because we typically associate behavior (and capability)
with the physical entity even when there are clear indicators
of different software programs dictating behavior at different
times. This is a harmful prior, as commercially available, visibly
similar robots do not necessarily share any common ground
in terms of capability, safety, or behavior. Prior efforts to
calibrate people’s expectations of robots have not extended
to anchoring on the robot’s control software rather than its
embodiment. In this work, we leverage social participation and
flexible identity presentation to facilitate coworkers’ associa-
tions of robot capability with the currently running software
rather than physical entity itself. By linking each of a robot’s
controllers to a social identity, we enable collaborators to more
easily differentiate between them. In a human subjects study
(n = 30), participants who experienced our social identity signal
understood differences between the robot’s two controllers and
prevented an unreliable controller from harming perceptions
of the robot’s other controller.

I. INTRODUCTION

People often have inaccurate expectations of
robots—whether through having a poor understanding
of the robot’s goals, being unable to predict its actions,
or having an inappropriate level of trust [1], [2], [3].
This problem is compounded by the fact that robots are
programmable and can exhibit multiple kinds of behaviors,
so having a good understanding of a robot at a particular
time may not translate to a different situation. User-facing
computer programs, on the other hand, are packaged and
branded as applications. Because of this abstraction, users
form separate expectations of the capabilities of each
application. This allows users to select the appropriate
software to perform a particular task, and transfer their
knowledge about a program from one device to another.

Crucially, due to robots’ embodiment and implicit social
participation, users do not not perceive them as mere comput-
ers [4], erasing assumptions of independence between soft-
ware applications. Despite being capable of running multiple
programs, robots do not typically communicate what logic is
running at a particular time, contributing to this perception.
Designers, programmers, or frequent operators—users with
comprehensive understanding of the robot’s behavior and
capabilities—may not require explicit communication about
this. Someone with less expertise, however, is unlikely to
have the same depth of understanding.
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Fig. 1: A participant supervises the robot in an order-
fulfillment task. Using a social identity signal to distinguish
between multiple robot controllers enables participants to
separately calibrate trust for each controller.

For example, someone who regularly works in a ware-
house with a robotic arm will become familiar with its
range of motion, speed, and the tasks it usually performs,
allowing them to collaborate and share space efficiently.
What happens, then, when the robot begins using updated
control software that changes its behavior? Even if the
coworker is told about the update, their familiarity with the
robot may become a liability, as they are overly confident in
their ability to safely share space with it but unable to predict
its new behavior. If, however, the coworker can separate
their familiarity with the robot from their familiarity with
its software, updates or other software changes can occur
without posing the safety risks of overconfidence.

Robots have considerable flexibility in how they present
their identity [5], and may use attributes such as names,
speech, behavior, and their physical form to do so [6]. Robots
are also fluid in their identity performance [7], meaning they
can alter the identity they are performing as the situation
requires it. In this work we take advantage of this flexible
identity presentation and the fact that robots are social actors
to communicate changes in running control software to a
human co-worker. We investigate expressions of identity as
an independent experimental variable for signaling a robot’s
capability and reliability at a suite of manipulation tasks.
Participants in an in-person, between-subjects (n = 30)
human subjects study work with an autonomous robotic arm
alternating between two control programs. The robot displays
either an algorithm name (unique for each controller) or one
of two identity signals. We show that people who experience
a socially-engaged identity signal can better differentiate



between controllers and appropriately calibrate trust in each.

II. RELATED WORK

Work in robotics has demonstrated that users often have
an inappropriate level of trust in robots or automated systems
[1], [8], [2], [3]. Both over- and under- trust in autonomous
systems can cause problems ranging from inefficient al-
location of resources to safety-critical failures [9]. Since
mistargeting trust levels in either direction is problematic,
the goal is trust appropriateness: a user’s trust in the system
matching the system’s capabilities [10]. Trust calibration is
the process of altering a user’s trust level in order to reach
an appropriate trust level [11]. Efforts in trust calibration
focus on trust repair: attempts to increase a user’s trust
in the system, typically after a failure [12], [13], and trust
dampening: lowering a user’s expectations when they may
be too high [14], [15].

Several strategies for targeted trust calibration have shown
promise. Trust-dampening messages from a virtual agent,
provided before low-reliability periods, increased a user’s
trust appropriateness [15]. A study on adaptive trust calibra-
tion [16] found that when users showed signs of over-trust
in a simulated quadcopter, alerting them before periods of
unreliability was more likely to change their behavior than
continuously reporting the likelihood of success. In another
study of virtual agents, participants were able to differentiate
trustworthiness between an agent that gave mostly correct
and mostly incorrect answers to general knowledge answers
[17]. These studies show that there are successful strategies
to encourage people to differentiate trust between the same
agent at different times, or between multiple virtual agents;
our work expands this line of inquiry to differentiating be-
tween different agents within the same physical embodiment.

Robot control code is difficult to interpret and predict,
even for expert users. Increasing the transparency of a robot
collaborator—by, for example communicating system limi-
tations, reliability, or task information—makes human-robot
teams more effective [18]. We use identity cues to increase
robot transparency by giving more information about the
robot’s current state and programming. While previous work
has developed methods to give expert users insight into
control code at a granular level [19], [20], our work provides
a method for increasing transparency by giving non-expert
users an “at-a-glance” understanding of the robot’s behavior.

We use the flexible social capabilities afforded by robots
to associate the robot’s social identities with specific el-
ements of its behavior, such as different policies [21] or
controllers for task execution. Luria et al. [22] observed
that robots are able to express social presence in ways
humans cannot; a social agent is not bound to a single form,
and a robotic form can host multiple social agents. This
flexibility of social presence can be useful: for example, a
single presence across multiple embodiments can create a
unified customer service experience [22], or a social presence
that suffers a hardware failure can move to a new body
while maintaining its relationship with its human collaborator
[23]. These techniques must be deployed carefully; if used

improperly, non-humanlike social presences can reduce trust,
cause privacy concerns, and raise questions about robot
ability [24]. Flexible social presence strategies are highly
context-dependent; small changes in how an agent or robot
is presented may strongly impact how a user views them.

Luria et al. [22] described a type of flexible social pres-
ence similar to the one we investigate as co-embodiment: a
single form hosting multiple identities at once. People were
uncomfortable with the co-embodiment scenario presented:
an autonomous vehicle, where the “driving” agent had a tense
discussion with a different agent. In this situation, the safety
concerns of a distracted driver may be more salient than the
general acceptability of co-embodiment. In our work, one
robot hosts multiple agents, but the agents are not active at
the same time and do not interact with each other. We expect
that this method of presenting agents and the less safety-
critical situation will not cause the same level of discomfort.

Williams et al. [25] proposed Deconstructed Trustee The-
ory, positing that trust in a robot can be separated into trust
in its physical form and in the agent or persona the robot
displays. They compared trust-building and -damaging state-
ments from robots with a consistent identity/embodiment
pairing, and robots where an agent “migrated” to another
body. They found evidence that participants had different
levels of trust in the body and the identity.

Our work investigates elements of this theory further,
though rather than differentiating between the robot body
and identity, we ask whether participants can differentiate be-
tween two different social agents presented as “controlling”
a single robot form. We investigate two forms of identity
cue to determine the minimum degree of social performance
that is salient to participants. We conduct our evaluation in-
person, because a social robot’s physical embodiment has a
significant impact on perceptions of it [3] [26]. If a user can
employ social identity signals to explain the robot’s behavior,
they can adjust their level of trust in the system according
to the robot’s capabilities at a particular time.

III. METHODS

A. Hypotheses

Our key insight is that identity signals should enable
users to differentiate between robot behaviors. To test this,
participants worked with a robot that used two controllers
with noticeably different levels of reliability. The robot used
one of three methods to signal which of its controllers was
active: a social identity signal, a “weak” identity signal, and
a baseline signal of an algorithm name. We expected that
the identity signals would improve participants’ awareness
of which controller was active at a particular time, and
differences in the behavior of each controller. Informed by
literature on robot identity and trust, we hypothesize that:

H1 : Participants in the identity-based groups will dif-
ferentiate between the controllers on measures of trust and
competence more than those in the algorithm-name group.

H2 : Participants in the identity-based groups will more
accurately predict the capability of the robot than the



Fig. 2: Diagram of the robot’s screen display in each condition, using either an algorithm name or an identity signal to
differentiate between each controller. The additional introduction cue used in the social identity condition is on the right.

algorithm-name group by incorporating the context of the
actively running controller.

We further expected that the social relevance of a hu-
manlike identity and the increased understandability of the
robot’s behavior would make participants feel more posi-
tively about the robot, thus we hypothesize:

H3 : Participants in the identity-based groups will have a
more positive perception of the robot than participants in the
algorithm-name group.

B. Experimental Design

In the study, participants were randomly sorted into one
of three conditions via block randomization. Participants
worked as a team with the robot, supervising the robot
performing an order-fulfillment task while they worked on
a distractor task. Throughout the order-fulfillment task the
robot switched between two types of control software. One
controller was very reliable, but only grasped a subset of
the items used in the task; the other could grasp any item
but sometimes made mistakes. In each group, the robot had
a different method of communicating which controller was
operating. The robot displayed an algorithm name (in the
baseline group), a weak identity signal, or a social identity
signal.

1) Robot Signals: The three conditions differed by how
the robot displayed which controller it was using. For the
duration of each order, the robot displayed an agent name,
a profile picture, and an algorithm name on its screen. An
example of this display is pictured in Figure 2.

Baseline: In the baseline condition, the robot used an
algorithm name: bin-pack-J for the unreliable controller, and
bin-pack-K for the reliable one. Both controllers had the
same agent name (“Sawyer”) and profile picture.

Weak identity: In the weak identity signal condition, the
robot used a more human-like name and a profile picture.
The agent name “Agate” was associated with the profile

picture of a purple trapezoid with a smiling face. The agent
name “Topaz” was associated with a yellow triangle with a
smiling face. For each participant, either Agate or Topaz was
randomly chosen to be associated with the reliable controller,
and the other associated with the unreliable controller. The
algorithm name displayed with both agents was “bin-pack-
K.”

Social identity: In the social identity signal condition, the
display of names, profile pictures, and algorithm name was
identical to the weak condition. In this condition, before
every order the robot’s screen displayed an introductory
message for each agent which read “Hi, I’m [agent name].
I’ll be controlling the robot for the next task.”

Before each order, the robot would not move until the
participant had identified the name of the agent (identity
conditions) or algorithm (baseline condition) displayed on
the robot’s screen. Their answer did not have to be correct
for the robot to begin the task.

The weak identity signal was used as an intermediate
signal between the social identity signal and the baseline,
utilizing identity cues more passively than the social identity
condition. The weak identity condition serves to unambigu-
ously measure whether the social performance of an agent,
rather than simply the presentation of name and picture,
would allow participants to differentiate between controllers.

2) Tasks: Participants had two tasks to complete si-
multaneously: supervising the robot performing an order-
fulfillment task, and doing a sorting task on a computer.

The supervision task was designed to simulate a ware-
house order fulfillment environment. The team would se-
quentially receive 14 orders, each consisting of one to three
items to be placed into a box. Each item was a wooden cube
with an image of the product it represents printed on four
sides, as pictured in Figure 3. The robot would pick up the
items from a table and place them into a box. When they
observed the robot make a mistake, participants were to press



Fig. 3: The robot picking up an item from its workspace
to be placed into the box for the order-fulfillment task. The
cubes with gold backgrounds (e.g., laptop in the top row)
are high value items.

a button indicating this (stopping the robot’s operation) and
manually fix the order by placing the correct items into the
box.

Four of the 14 orders were designated high value orders,
which were composed of a distinct set of objects from the
other orders (the gold blocks pictured in Figure 3). In these
situations, participants were asked to choose ahead of time
whether the robot would fulfill the order, or if they would
pack it themselves. If the robot failed, participants were not
given the opportunity to fix these orders.

In the sorting (distractor) task, pictured in Figure 4,
participants would see items to be sorted. They had to match
items to one of three banks of allowable items (pictured
beneath the robotic arms) or indicate that the item was not
currently allowable. The allowable items were periodically
randomized. An actual worker would have multiple respon-
sibilities and not be able to watch a robot at all times, so
participants were asked to divide their attention between
supervising the robot and the sorting task.

For both tasks, participants were motivated by points.
Participants could always see the team’s point total on their
screen, shown at the top right of Figure 4. When the robot
completed an order correctly, or the participant intervened to
correct an order, the team earned points; if the order was not
fulfilled correctly, the team lost points. The participant could
also earn points for the team by sorting items correctly on
the distractor task. Participants were instructed to attempt to
reach a target number of points.

3) Robot controllers: For all participants, the robot would
run one of two software controllers. When using one con-
troller (reliable), the robot was only able to pick up a subset
of the items that appeared in orders, but made no mistakes.
With the other controller (unreliable), the robot could pick
up every item, but sometimes made mistakes. The reliable
controller was 100% reliable, and the unreliable one was
70% reliable on a per-item basis. The robot would use the
unreliable controller only when an order contained one of the
items the reliable controller could not pick up. Participants

Fig. 4: The participants’ distractor task. They matched each
item that appeared above the “reject” button to one of the
banks of items beneath the robotic arms, or rejected the item
if there was no match.

were not told that the robot was using two controllers,
as we were measuring whether they noticed and recalled
differences between them.

The unreliable controller exhibited 4-5 failures throughout
the game. All failures were problems with manipulation
or perception: for example, dropping an item or grasping
an unwanted item. The first two failures occurred at the
same point for all participants, within the first four orders
attempted. High value orders, where participants chose to
assign the task to the robot or themselves, occurred at
specific points throughout the tasks. The sequence of the
remaining orders (including failures) was randomized for
each participant.

C. Experimental Procedure

Participants gave written consent on a form explaining
the experimental procedure, then filled out a questionnaire
with demographic questions and their initial impressions of
the robot. After this, an experimenter verbally explained
the task and demonstrated the robot using both the reliable
and unreliable controller, and the identity or algorithm-name
signal for the participant’s group.

An experimenter then seated the participant at a table
adjacent to the robot’s workspace (pictured in Figure 1).
Their table contained a laptop that they used to complete
their portion of the task. The workspaces were situated so
that participants had to turn their head toward to robot to
see what it was doing. Participants were given a motion-
tracking headband to wear while supervising the robot and
performing their sorting task. The task took 15-20 minutes.

After completing the task, participants filled out question-
naires with questions about their views of the robot, and of
each algorithm or agent they had seen. Then an experimenter
conducted a brief interview with each participant, and par-
ticipants were debriefed about the purpose of the study.

D. Metrics

1) Attention and Prediction Metrics: Participants were
seated in the field of view of motion-tracking cameras, and



wore a headband containing motion-capture markers. Their
chair faced the computer displaying the user interface, and
the robot was at an adjacent table. The robot’s workstation
was positioned so participants could not see which objects
the robot was grasping without turning their heads to look
at it.

To measure participant attention, we calculated whether
they were looking at the computer, the robot, or elsewhere
during each portion of the task. We logged when participants
were actively performing the sorting task during any time
of the experiment, and whether each “click” on this task
was correct. We recorded whether participants identified each
time the robot made a mistake in the order fulfillment task.

For the four high-value orders where the participant de-
cided ahead of time who had responsibility for packing the
order, we measured whether they assigned responsibility to
themselves or to the robot.

2) Subjective Metrics:
Attitudes about robot. Prior to working with the robot,
participants had answered five questions about their opinion
of the robot, which they then answered again after doing the
task with the robot. The post-experiment questionnaire also
contained more extensive questions about their opinions of
the robot. Questions were based on the Multi-Dimensional
Measure of Trust scale [27] and Hoffman’s fluency measures
for Human-Robot Collaboration [28]. All questions were in
the form of a statement, with responses falling on a 7-point
scale with the endpoints “strongly agree” and “strongly dis-
agree.” Intermediate points were numbered but not labeled.

Attitudes about controllers. Each participant had been
shown two agents or algorithms; after working with the
robot, they answered whether they had seen each of four
agent or algorithm names. For each name they remembered
seeing, they answered questions about it. The wording by
necessity varied slightly between conditions, but differed as
little as possible: “I trusted the robot to complete the task
correctly when the [algorithm being used/agent was active]”

Interview After the experiment, we asked each participant
if they had noticed the agents or algorithms as they were
performing the task. If they had, we asked if they had noticed
any differences between them, and if so, what they were.

IV. RESULTS

We conducted an IRB-approved between-subjects study
with 31 participants recruited from our university campus.
One participant’s data was discarded due to robot malfunc-
tion. The data of 30 participants were analyzed, 10 in each
group. 20 participants identified as male, nine as female, and
one did not say. The median age range reported was 18-24.

We found that the social identity group was significantly
more likely to differentiate between the robot’s controllers
than the other groups. After participants completed the
task with the robot and the post-experiment questionnaires,
experimenters conducted a brief verbal interview. During
the interview, we asked whether participants had noticed a
difference between the agents or algorithms (i.e., the robot’s
two controllers), and if so, what the differences were. 60% of

Fig. 5: After completing the task, participants were asked
whether they recalled a difference between the two con-
trollers presented to them. Each participant reported the name
of the active controller 14 times while working with the
robot. Despite this, only participants in the social identity
group reliably recalled the difference.

participants from the social identity group verbally described
the difference between the two controllers, compared to
30% in the baseline group and 20% in the weak identity
group, as visualized in Figure 5. Comments about how
the controllers differed included descriptions such as one
being “more reliable,” “more accurate,” or “less trustworthy.”
Participants in the social identity group were more likely to
recall both the names of the controllers and the behavior of
each. We did not count inaccurate comments: those which
named agents or algorithms that did not appear, noted that
the reliable agent or algorithm made errors, or claimed that
one agent was active for the high value orders and the other
completed the remaining orders.

When asked in the questionnaire about the agents or
algorithms they had seen, the social identity group was
the only one to record a significant difference in their
confidence level between the robot’s two controllers. Par-
ticipants indicated their agreement on a 7-point scale with
7 being “strongly agree.” Participants in the social-identity
group responded with a median answer of 5 for the name
associated with the unreliable controller and 6 for the name
associated with the reliable controller. Median responses are
shown in Figure 6. A Wilcoxon signed-rank test (used for
comparison of paired non-parametric data) shows that this
difference is statistically significant (W = 0.0, p = .008).
The other groups’ responses were not significantly different
between controllers. This indicates that participants in the
social identity group calibrated their trust appropriately
between the controllers.

The social identity group’s confidence in the unreliable
controller was also significantly lower than the baseline
group’s confidence in the same controller. Participants in the
social identity group responded with a median answer of 5
(as discussed above), while participants in the baseline group
had a median response of 7. A Kruskall-Wallis test (used for
comparisons of non-parametric data between more than 2



Fig. 6: After working with the robot using each controller
several times, participants were asked about their confidence
in each controller. * indicates that social identity group
participants were significantly more confident in the reliable
controller than the unreliable one (p < .05), and the social
identity group was significantly less confident in the unreli-
able controller than the baseline group (p < .05).

groups) of all three groups suggests that there is a difference
between groups. A Mann-Whitney U Test (used for compar-
isons of non-parametric data between independent groups)
between the baseline group and the social identity group
shows that the difference is statistically significant (U =
62.0, p = .01). This suggests that the trust-calibrating effects
of experiencing the social identity signals were stronger than
those of the baseline algorithm name signal.

A. Attitudes About the Robot

Changes in attitude To determine the social impact of the
robot’s behavior, participants answered five questions about
the robot before and after working with it. Participants in
the social identity group were the only ones whose answers
differed significantly after working with the robot.

Participants in the social identity group thought the robot
was more likable after working with it. For the statement
“The robot is likable,” the median answer (on a 7-point scale)
for participants in the social-identity group was 5 before
working with the robot, and 6 after. A Wilcoxon signed-rank
test shows the difference between before and after responses
is statistically significant (W = 0.0, p = .008).

Participants in the social identity group were also less
likely to think the robot was uncooperative after working
with it. For the statement “The robot is uncooperative,” the
median answer for participants in the social-identity group
was 3 before working with the robot and 1.5 after working
with the robot. A Wilcoxon signed-rank test shows the
difference between before and after responses in this group
is statistically significant (W = 0.0, p = .03). Participants
in the other groups did not show a statistically significant
change for any of the questions after working with the robot.
These results suggest that the social cues displayed by the
robot gives users a positive social experience with the robot.

General attitudes: A Kruskal-Wallis test indicates that
there is a difference between the groups in responding to

“The robot had an important contribution to the success of
the team.” The median response was 7 for participants in
the baseline group, and 6 for the social identity group. A
Mann-Whitney U test shows that the difference between the
baseline and social identity groups is statistically significant
(U = 81.5, p = .02). This difference somewhat contradicts
our expectations, but may be caused by the identity groups
seeing both the robot and agents as entities with apparent
agency.

We found an unexpected difference between groups for
the statement “The robot is intelligent.” The median answer
for the baseline group was 6, and for the weak identity group
was 4. A Mann-Whitney U test indicates that the difference
between groups is significant (U = 92, p = .01). In general,
the weak identity group’s opinions of the robot were slightly
more negative than the other groups.

B. Attention and prediction

26% of participants had very limited or no activity on
the distractor task, even when reminded. We could not
meaningfully analyze these participants’ distractor task or
head-turning behavior, because they were not splitting their
attention between the robot and the distractor task. We
suspect that this noncompliance was due to the robot being
more interesting than the sorting task.

Rates of assigning responsibility to the robot for high-
value orders were nearly identical between groups.

Among participants who engaged with the distractor task,
participants in the social identity group had a different super-
vision strategy than those in the baseline group. A Tukey’s
HSD test shows that social identity group participants had
significantly fewer clicks on the distractor task at times
when the robot was moving items than participants in the
baseline group (mean clicks social identity: 36.6, baseline:
71.6, p = .005). There was no significant difference in
activity when the robot was moving but not handling items.
This finding indicates that social identity group participants
watched the robot more at critical points in the task than
baseline participants.

V. DISCUSSION AND CONCLUSIONS

Despite each participant identifying the active controller
14 times throughout the task, and overseeing at least four
failures of the unreliable controller, only participants in the
social identity group could reliably differentiate between
the controllers after working with the robot. Participants
in the social identity group were also more likely to report
a different level of confidence in each controller. This
difference in confidence level indicates that participants in
this group calibrated their trust for each controller, not the
system as a whole. Participants in the baseline and weak
identity groups largely did not differentiate between the
controllers. This finding supports H1, suggesting that the
social identity signal is more effective than the other cues
for a robot to demonstrate differences in its programming
that will affect its behavior.

We did not find evidence to support H2.



The social identity cues led to improved social perceptions
of the robot: participants in the social identity group found
the robot more likable and less uncooperative after working
with it. This finding supports H3. This is likely due to the
social engagement of the agents’ greeting messages. Since
the agents introduced themselves via the robot, the sociability
of the agents may have transferred to perceptions of the
robot as a whole. We did not, however, observe these positive
social perceptions with the weak identity cue.

A key finding from this study was that not all perfor-
mances of identity are equal. While the social identity cue
successfully allowed users to develop a separate understand-
ing of each controller, the weak identity cue was not a
strong enough signal to get participants to recall a difference
between them. This finding is in line with previous results,
which have found that there is a great deal of variability
in acceptance of robot social presence cues [22], [24].
Subtle robot social cues that are subconsciously followed in
human-human interactions have previously been found to be
inadequate in communicating robot intent [29]. Expressions
of robot social identity likewise need to be conspicuous
to be effective, as shown through our study.

Though the small sample size was a limitation in this
study, we found that treating each controller as an entity
separate from other controllers or the robot itself can be a
useful strategy for a robot’s users. This conceptualization
brings nuance to a user’s understanding of a robot, enabling
them to evaluate distinct elements of its behavior separately.
We find that a performance of identity is an effective way to
signal users of software differences, and that robot identity
performances must contain social cues to be salient to human
collaborators.
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